Nico de Storme

Learn More
In the plant kingdom, events of whole genome duplication or polyploidization are generally believed to occur via alterations of the sexual reproduction process. Thereby, diploid pollen and eggs are formed that contain the somatic number of chromosomes rather than the gametophytic number. By participating in fertilization, these so-called 2n gametes generate(More)
Whole-genome duplication through the formation of diploid gametes is a major route for polyploidization, speciation, and diversification in plants. The prevalence of polyploids in adverse climates led us to hypothesize that abiotic stress conditions can induce or stimulate diploid gamete production. In this study, we show that short periods of cold stress(More)
Aurora is an evolutionary conserved protein kinase family involved in monitoring of chromosome segregation via phosphorylation of different substrates. In plants, however, the involvement of Aurora proteins in meiosis and in sensing microtubule attachment remains to be proven, although the downstream components leading to the targeting of spindle assembly(More)
In plants, whole-genome doubling (polyploidization) is a widely occurring process largely contributing to plant evolution and diversification. The generation and fusion of diploid gametes is now considered the major route of plant polyploidization. The parallel arrangement or fusion of meiosis II MII spindles (ps) is one of the most frequently reported(More)
Mob1 genes are primarily involved in the cell cycle progression and mitosis exit in yeasts and animals. The function of a Mob1-like gene (At5g45550) from Arabidopsis thaliana was investigated using RNAi and immunological staining. AtMob1-like RNAi silenced lines showed a reduced radial expansion of the inflorescence stem and a reduced elongation zone of the(More)
In meiosis, chromosome cohesion is maintained by the cohesin complex, which is released in a two-step manner. At meiosis I, the meiosis-specific cohesin subunit Rec8 is cleaved by the protease Separase along chromosome arms, allowing homologous chromosome segregation. Next, in meiosis II, cleavage of the remaining centromere cohesin results in separation of(More)
Plasmodesmata are membrane-lined channels that are located in the plant cell wall and that physically interconnect the cytoplasm and the endoplasmic reticulum (ER) of adjacent cells. Operating as controllable gates, plasmodesmata regulate the symplastic trafficking of micro- and macromolecules, such as endogenous proteins [transcription factors (TFs)] and(More)
In sexually reproducing plants, the meiocyte-producing archesporal cell lineage is maintained at the diploid state to consolidate the formation of haploid gametes. In search of molecular factors that regulate this ploidy consistency, we isolated an Arabidopsis thaliana mutant, called enlarged tetrad2 (et2), which produces tetraploid meiocytes through the(More)
In apomictic Boechera spp., meiotic diplospory leads to the circumvention of meiosis and the suppression of recombination to produce unreduced male and female gametes (i.e. apomeiosis). Here, we have established an early flower developmental staging system and have performed microarray-based comparative gene expression analyses of the pollen mother cell(More)