Learn More
Neural-antigen reactive cytotoxic CD8+ T cells contribute to neuronal dysfunction and degeneration in a variety of inflammatory CNS disorders. Facing excess numbers of target cells, CNS-invading CD8+ T cells cause neuronal cell death either via confined release of cytotoxic effector molecules towards neurons, or via spillover of cytotoxic effector molecules(More)
Cytotoxic CD8(+) T cells are considered important effector cells contributing to neuronal damage in inflammatory and degenerative CNS disorders. Using time-lapse video microscopy and two-photon imaging in combination with whole-cell patch-clamp recordings, we here show that major histocompatibility class I (MHC I)-restricted neuronal antigen presentation(More)
BACKGROUND Two novel antibodies (abs) directed to γ-aminobutyric acid B receptor (GABA(B)R) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) in patients with limbic encephalitis (LE) were first described by the Philadelphia/Barcelona groups and confirmed by the Mayo group. We present a novel series for further clinical and(More)
Multiple sclerosis is a chronic disabling CNS disorder, characterized by autoimmune inflammatory demyelination and neurodegeneration. CD200, broadly expressed on neurons and endothelial cells, mediates inhibitory signals through its receptor, CD200R, on cells of myeloid origin. Antibody-mediated blockade of CD200R leads to an aggravated clinical course of(More)
BACKGROUND In amyloid (Aβ)-related angiitis (ABRA)of the central nervous system (CNS), cerebral amyloid angiopathy occurs in association with primary vasculitis of small- and medium-sized leptomeningeal and cortical arteries. It has been suggested that ABRA is triggered by vascular deposition of A followed by an Aβ-directed (auto)immune response. (More)
Cytotoxic CD8(+) T cells are increasingly recognized as key players in various inflammatory and degenerative central nervous system (CNS) disorders. CD8(+) T cells are believed to actively contribute to neural damage in these CNS conditions. Conceptually, one can separate two possible ways that CD8(+) T cells harm neuronal function or integrity: CD8(+) T(More)
Excitatory amino acid transporters (EAATs) mediate two distinct transport processes, a stoichiometrically coupled transport of glutamate, Na+, K+, and H+, and a pore-mediated anion conductance. We studied the anion conductance associated with two mammalian EAAT isoforms, hEAAT2 and rEAAT4, using whole-cell patch clamp recording on transfected mammalian(More)
We provide evidence that TWIK-related acid-sensitive potassium channel 1 (TASK1), a member of the family of two-pore domain potassium channels relevant for setting the resting membrane potential and balancing neuronal excitability that is expressed on T cells and neurons, is a key modulator of T cell immunity and neurodegeneration in autoimmune central(More)
OBJECTIVE It was hypothesized that in encephalitides with autoantibodies directed to CNS surface antigens an antibody-removing intervention might speed up recovery. METHODS The outcome of autoimmune encephalitis in 19 patients with antibodies against surface antigens (leucine-rich, glioma inactivated 1 [LGI1], n = 3; contactin-associated protein-2(More)
Multiple sclerosis (MS) and chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) represent chronic, autoimmune demyelinating disorders of the central and peripheral nervous system. Although both disorders share some fundamental pathogenic elements, treatments do not provide uniform effects across both disorders. We aim at providing an overview(More)