Learn More
We provide evidence that TWIK-related acid-sensitive potassium channel 1 (TASK1), a member of the family of two-pore domain potassium channels relevant for setting the resting membrane potential and balancing neuronal excitability that is expressed on T cells and neurons, is a key modulator of T cell immunity and neurodegeneration in autoimmune central(More)
CD4+ CD25+ forkhead box P3 (FoxP3)+ regulatory T cells (T reg cells) are known to suppress adaptive immune responses, key control tolerance and autoimmunity. We challenged the role of CD4+ T reg cells in suppressing established CD8+ T effector cell responses by using the OT-I/II system in vitro and an OT-I-mediated, oligodendrocyte directed ex vivo model(More)
Multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE) are characterized by T cell-mediated autoimmune inflammation of the central nervous system (CNS) leading to oligodendrocyte loss and demyelination accompanied by neuronal cell death. Neuronal TWIK-related acid-sensitive potassium (TASK) channels allow the regulated(More)
BACKGROUND Two novel antibodies (abs) directed to γ-aminobutyric acid B receptor (GABA(B)R) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) in patients with limbic encephalitis (LE) were first described by the Philadelphia/Barcelona groups and confirmed by the Mayo group. We present a novel series for further clinical and(More)
In multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE), impairment of glial "Excitatory Amino Acid Transporters" (EAATs) together with an excess glutamate-release by invading immune cells causes excitotoxic damage of the central nervous system (CNS). In order to identify pathways to dampen excitotoxic inflammatory(More)
Excitatory amino acid transporters (EAATs) terminate glutamatergic synaptic transmission and maintain extracellular glutamate concentrations in the central nervous system below excitotoxic levels. In addition to sustaining a secondary-active glutamate transport, EAAT glutamate transporters also function as anion-selective channels. Here, we report a gating(More)
Excitatory amino acid transporters (EAATs) mediate two distinct transport processes, a stoichiometrically coupled transport of glutamate, Na+, K+, and H+, and a pore-mediated anion conductance. We studied the anion conductance associated with two mammalian EAAT isoforms, hEAAT2 and rEAAT4, using whole-cell patch clamp recording on transfected mammalian(More)
Cytotoxic CD8(+) T cells are considered important effector cells contributing to neuronal damage in inflammatory and degenerative CNS disorders. Using time-lapse video microscopy and two-photon imaging in combination with whole-cell patch-clamp recordings, we here show that major histocompatibility class I (MHC I)-restricted neuronal antigen presentation(More)
Demyelination and death of oligodendrocytes accompanied by transection of neurites and neuronal apoptosis are pathological hallmarks of cortical and subcortical gray matter lesions in demyelinating viral and autoimmune inflammatory CNS disorders. In these disorders, leukocortical lesions, containing the perikarya of most efferent neurons, display pronounced(More)
Multiple sclerosis is a chronic disabling CNS disorder, characterized by autoimmune inflammatory demyelination and neurodegeneration. CD200, broadly expressed on neurons and endothelial cells, mediates inhibitory signals through its receptor, CD200R, on cells of myeloid origin. Antibody-mediated blockade of CD200R leads to an aggravated clinical course of(More)