Nickolai Alexandrov

Learn More
We present a large portion of the transcriptome of Zea mays, including ESTs representing 484,032 cDNA clones from 53 libraries and 36,565 fully sequenced cDNA clones, out of which 31,552 clones are non-redundant. These and other previously sequenced transcripts have been aligned with available genome sequences and have provided new insights into the(More)
UNLABELLED We have developed a program for automatic identification of domains in protein three-dimensional structures. Performance of the program was assessed by three different benchmarks: (i) by comparison with the expert-curated SCOP database of structural domains; (ii) by comparison with a collection of manual domain assignments; and (iii) by(More)
Fast growth of the number of the solved protein structures is increasing the role of their comparative analysis. In this paper I describe a new program, SARF2, for protein structure comparison and discuss new examples of the non-topological structural resemblance. SARF2 is designed to detect ensembles of secondary structure elements, which form similar(More)
Arabidopsis is currently the reference genome for higher plants. A new, more detailed statistical analysis of Arabidopsis gene structure is presented including intron and exon lengths, intergenic distances, features of promoters, and variant 5′-ends of mRNAs transcribed from the same transcription unit. We also provide a statistical characterization of(More)
Annotation of eukaryotic genomes is a complex endeavor that requires the integration of evidence from multiple, often contradictory, sources. With the ever-increasing amount of genome sequence data now available, methods for accurate identification of large numbers of genes have become urgently needed. In an effort to create a set of very high-quality gene(More)
We have developed a new method and program, SARF2, for fast comparison of protein structures, which can detect topological as well as nontopological similarities. The method searches for large ensembles of secondary structure elements, which are mutually compatible in two proteins. These ensembles consist of small fragments of C alpha-trace, similarly(More)
We propose new empirical scoring potentials and associated alignment procedures for optimally aligning protein sequences to protein structures. The method has two main applications: first, the recognition of a plausible fold for a protein sequence of unknown structure out of a database of representative protein structures and, second, the improvement of(More)
We have created a high-resolution linkage map of Miscanthus sinensis, using genotyping-by-sequencing (GBS), identifying all 19 linkage groups for the first time. The result is technically significant since Miscanthus has a very large and highly heterozygous genome, but has no or limited genomics information to date. The composite linkage map containing(More)
The third, or wobble, position in a codon provides a high degree of possible degeneracy and is an elegant fault-tolerance mechanism. Nucleotide biases between organisms at the wobble position have been documented and correlated with the abundances of the complementary tRNAs. We and others have noticed a bias for cytosine and guanine at the third position in(More)
We have completed an exhaustive search for the common spatial arrangements of backbone fragments (SARFs) in nonhomologous proteins. This type of local structural similarity, incorporating short fragments of backbone atoms, arranged not necessarily in the same order along the polypeptide chain, appears to be important for protein function and stability. To(More)