Nick G. C. Smith

Learn More
For over 30 years a central question in molecular evolution has been whether natural selection plays a substantial role in evolution at the DNA sequence level. Evidence has accumulated over the last decade that adaptive evolution does occur at the protein level, but it has remained unclear how prevalent adaptive evolution is. Here we present a simple method(More)
To investigate mutation-rate variation between autosomes and sex chromosomes in the avian genome, we have analyzed divergence between chicken (Gallus gallus) and turkey (Meleagris galopavo) sequences from 33 autosomal, 28 Z-linked, and 14 W-linked introns with a total ungapped alignment length of approximately 43,000 bp. There are pronounced differences in(More)
We have attempted to quantify the frequency and effects of slightly deleterious mutations (SDMs), those that have selective effects close to the reciprocal of the effective population size of a species, by comparing the level of selective constraint in protein-coding genes of related species that have different present-day effective population sizes. In our(More)
Most studies of microsatellite evolution utilize long, highly mutable loci, which are unrepresentative of the majority of simple repeats in the human genome. Here we use an unbiased sample of 2,467 microsatellite loci derived from alignments of 5.1 Mb of genomic sequence from human and chimpanzee to investigate the mutation process of tandemly repetitive(More)
We have examined the compositional evolution of noncoding DNA in the primate genome by comparison of lineage-specific substitutions observed in 1.8 Mb of genomic alignments of human, chimpanzee, and baboon with 6542 human single-nucleotide polymorphisms (SNPs) rooted using chimpanzee sequence. The pattern of compositional evolution, measured in terms of the(More)
If DNA replication is a major cause of mutation, then those life-history characters, which are expected to affect the number of male germline cell divisions, should also affect the male to female mutation bias (alpha(m)). We tested this hypothesis by comparing several clades of bird species, which show variation both in suitable life-history characters(More)
Recent advances in the large-scale sequencing of mammalian genomes have provided a means to study divergence in not only genic sequences but also in the non-coding bulk of DNA. There is evidence of significant variation in the levels of divergence between presumably neutral regions, pointing at an underlying variation in the rate of mutation across the(More)
Approximately two thirds of all knockouts of individual mouse genes give rise to viable fertile mice. These genes have thus been termed 'non-essential' in contrast to 'essential' genes, the knockouts of which result in death or infertility. Although non-essential genes are likely to be under selection that favours sequence conservation [1], it is predicted(More)
The vast majority of the mammalian genome does not code for proteins, and a fundamental question in genomics is: What proportion of the noncoding mammalian genome is functional? Most attempts to address this issue use sequence comparisons between highly diverged mammals such as human and mouse to identify conservation due to negative selection. But such(More)
Several studies of substitution rate variation have indicated that the local mutation rate varies over the mammalian genome. In the present study, we show significant variation in substitution rates within the noncoding part of the human genome using 4.7 Mb of human-chimpanzee pairwise comparisons. Moreover, we find a significant positive covariation of(More)