Learn More
We have attempted to quantify the frequency and effects of slightly deleterious mutations (SDMs), those that have selective effects close to the reciprocal of the effective population size of a species, by comparing the level of selective constraint in protein-coding genes of related species that have different present-day effective population sizes. In our(More)
The vast majority of the mammalian genome does not code for proteins, and a fundamental question in genomics is: What proportion of the noncoding mammalian genome is functional? Most attempts to address this issue use sequence comparisons between highly diverged mammals such as human and mouse to identify conservation due to negative selection. But such(More)
The large-scale systematic variation in nucleotide composition along mammalian and avian genomes has been a focus of the debate between neutralist and selectionist views of molecular evolution. Here we test whether the compositional variation is due to mutation bias using two new tests, which do not assume compositional equilibrium. In the first test we(More)
We analyze recombination in C. jejuni using MLST data from isolates taken from wild birds, cattle, wild rabbits, and water in a 100-km2 study region in Cheshire, UK. We use a recent approximate likelihood method for inference, based on combining likelihood information from all pairs of segregating (polymorphic) sites in the data. We find substantial(More)
We have used analysis of variance to partition the variation in synonymous and amino acid substitution rates between three effects (gene, lineage, and a gene-by-lineage interaction) in mammalian nuclear and mitochondrial genes. We find that gene effects are stronger for amino acid substitution rates than for synonymous substitution rates and that lineage(More)
Murid rodents show much less variation in isochore base composition than do most other mammals, a difference which has been referred to as the murid shift. We have investigated the murid shift by asking (1) whether the murid shift is ongoing and (2) whether there is any evidence of selection or biased gene conversion affecting base composition in the(More)
We introduce a new method for detection of recombination hotspots from population genetic data. This method is based on (a) defining an (approximate) penalized likelihood for how recombination rate varies with physical position and (b) maximizing this penalized likelihood over possible sets of recombination hotspots. Simulation results suggest that this is(More)
We have performed simulations to assess the performance of three population genetics approximate-likelihood methods in estimating the population-scaled recombination rate from sequence data. We measured performance in two ways: accuracy when the sequence data were simulated according to the (simplistic) standard model underlying the methods and robustness(More)