Nick Dorrell

Learn More
The two-component regulatory system PhoPQ has been identified in many bacterial species. However, the role of PhoPQ in regulating virulence gene expression in pathogenic bacteria has been characterized only in Salmonella species. We have identified, cloned, and sequenced PhoP orthologues from Yersinia pestis, Yersinia pseudotuberculosis, and Yersinia(More)
Campylobacter jejuni is the leading bacterial cause of human gastroenteritis in the developed world. To improve our understanding of this important human pathogen, the C. jejuni NCTC11168 genome was sequenced and published in 2000. The original annotation was a milestone in Campylobacter research, but is outdated. We now describe the complete re-annotation(More)
We describe in this report the characterization of the recently discovered N-linked glycosylation locus of the human bacterial pathogen Campylobacter jejuni, the first such system found in a species from the domain Bacteria. We exploited the ability of this locus to function in Escherichia coli to demonstrate through mutational and structural analyses that(More)
Campylobacter jejuni is the leading cause of bacterial food-borne diarrhoeal disease throughout the world, and yet is still a poorly understood pathogen. Whole genome microarray comparisons of 11 C. jejuni strains of diverse origin identified genes in up to 30 NCTC 11168 loci ranging from 0.7 to 18.7 kb that are either absent or highly divergent in these(More)
Campylobacter jejuni is the predominant cause of bacterial gastroenteritis worldwide, but traditional typing methods are unable to discriminate strains from different sources that cause disease in humans. We report the use of genomotyping (whole-genome comparisons of microbes using DNA microarrays) combined with Bayesian-based algorithms to model the(More)
Transcriptional profiling of Campylobacter jejuni during colonization of the chick cecum identified 59 genes that were differentially expressed in vivo compared with the genes in vitro. The data suggest that C. jejuni regulates electron transport and central metabolic pathways to alter its physiological state during establishment in the chick cecum.
BACKGROUND & AIMS Phospholipase activity may play a role in the pathogenicity of Helicobacter pylori. Furthermore, some drugs that are effective against H. pylori infection are phospholipase inhibitors. Scrutiny of the H. pylori 26695 genome sequence revealed the presence of a putative protein with homology to Esherichia coli outer membrane phospholipase A(More)
The ompR-envZ two-component regulatory system has been shown to contribute to virulence in a number of enteric bacterial pathogens. A Yersinia enterocolitica O:8 ompR homologue was amplified, cloned and sequenced, showing 99.2% homology to the Escherichia coli OmpR. An isogenic ompR mutant was constructed by reverse genetics-based methodology. The mutant(More)
The genome sequence of the human pathogen Campylobacter jejuni NCTC11168 has been determined recently, but studies on colonization and persistence in chickens have been limited due to reports that this strain is a poor colonizer. Experimental colonization and persistence studies were carried out with C. jejuni NCTC11168 by using 2-week-old Light Sussex(More)
Explorative approaches such as DNA microarray experiments are becoming increasingly important in microbial research. Despite these major technical advancements, approaches to study multifactor experiments are still lacking. We have addressed this problem by using rotation testing and a novel multivariate analysis of variance (MANOVA) approach (50-50 MANOVA)(More)