Learn More
OBJECTIVE Isopropylamine NONOate (IPA/NO) is a nitroxyl (HNO) donor at physiologic pH. HNO is a positive inotrope and vasodilator, but little is known about its effect on neointimal hyperplasia. The aims of this study are to determine the effect of IPA/NO on endothelial and vascular smooth muscle cells (VSMC) in vitro and to determine if IPA/NO inhibits(More)
Noncompressible torso hemorrhage is a leading cause of mortality in civilian and battlefield trauma. We sought to develop an i.v.-injectable, tissue factor (TF)-targeted nanotherapy to stop hemorrhage. Tissue factor was chosen as a target because it is only exposed to the intravascular space upon vessel disruption. Peptide amphiphile (PA) monomers that(More)
Nitric oxide (NO) limits formation of neointimal hyperplasia in animal models of arterial injury in large part by inhibiting vascular smooth muscle cell (VSMC) proliferation through cell cycle arrest. The ubiquitin-conjugating enzyme UbcH10 is responsible for ubiquitinating cell cycle proteins for proper exit from mitosis. We hypothesize that NO prevents(More)
BACKGROUND Proteins are targeted for degradation by the addition of a polyubiquitin chain. Chains of ubiquitin linked via lysine 48 (K48) are associated with protein degradation while chains linked via lysine 63 (K63) are associated with intracellular signaling. We have previously shown that nitric oxide (NO) inhibits neointimal hyperplasia in association(More)
Since its discovery, nitric oxide (NO) has emerged as a biologically important molecule and was even named Molecule of the Year by Science magazine in 1992. Specific to our interests, NO has been implicated in the regulation of vascular pathology. This review begins with a summary of the molecular biology of NO, from its discovery to the mechanisms of(More)
Bacterial histone-like DNA-binding proteins are best known for their role in compacting the genomic DNA. Of these proteins, HU is ubiquitous and highly conserved across the eubacterial kingdom. Using the HBsu (Bacillus subtilis-encoded HU homologue) as a model, we explore here the molecular basis for the ability of some HU homologues to engage a longer(More)
Type II diabetes mellitus (DM) and metabolic syndrome are associated with accelerated restenosis following vascular interventions due to neointimal hyperplasia. The efficacy of nitric oxide (NO)-based therapies is unknown in these environments. Therefore, the aim of this study is to examine the efficacy of NO in preventing neointimal hyperplasia in animal(More)
Prosthetic devices that come into contact with blood ultimately fail secondary to thrombus formation. This limits the utility of a variety of materials used to surgically treat cardiovascular disease, including vascular grafts and stents, as well as sensors and catheters placed within the circulatory system. Moreover, systemic anticoagulation that is used(More)
OBJECTIVE Nitric oxide (NO) has been shown to inhibit neointimal hyperplasia after arterial interventions in several animal models. To date, however, NO-based therapies have not been used in the clinical arena. Our objective was to combine nanofiber delivery vehicles with NO chemistry to create a novel, more potent NO-releasing therapy that can be used(More)
Association of the TATA-binding protein (TBP) with its cognate site within eukaryotic promoters is key to accurate and efficient transcriptional initiation. To achieve recruitment of Saccharomyces cerevisiae RNA polymerase III, TBP is associated with two additional factors, Brf1 and Bdp1, to form the initiation factor TFIIIB. Previous data have suggested(More)