Learn More
Relatively recent work has reported that networks of neurons can produce avalanches of activity whose sizes follow a power law distribution. This suggests that these networks may be operating near a critical point, poised between a phase where activity rapidly dies out and a phase where activity is amplified over time. The hypothesis that the electrical(More)
Information theory has long been used to quantify interactions between two variables. With the rise of complex systems research, multivariate information measures have been increasingly used to investigate interactions between groups of three or more variables, often with an emphasis on so called synergistic and redundant interactions. While bivariate(More)
The performance of complex networks, like the brain, depends on how effectively their elements communicate. Despite the importance of communication, it is virtually unknown how information is transferred in local cortical networks, consisting of hundreds of closely spaced neurons. To address this, it is important to record simultaneously from hundreds of(More)
Understanding the detailed circuitry of functioning neuronal networks is one of the major goals of neuroscience. Recent improvements in neuronal recording techniques have made it possible to record the spiking activity from hundreds of neurons simultaneously with sub-millisecond temporal resolution. Here we used a 512-channel multielectrode array system to(More)
Recent studies have emphasized the importance of multiplex networks--interdependent networks with shared nodes and different types of connections--in systems primarily outside of neuroscience. Though the multiplex properties of networks are frequently not considered, most networks are actually multiplex networks and the multiplex specific features of(More)
Information theory has long been used to quantify interactions between two variables. With the rise of complex systems research, multivariate information measures are increasingly needed. Although the bivariate information measures developed by Shannon are commonly agreed upon, the multivariate information measures in use today have been developed by many(More)
Recent work has shown that functional connectivity among cortical neurons is highly varied, with a small percentage of neurons having many more connections than others. Also, recent theoretical developments now make it possible to quantify how neurons modify information from the connections they receive. Therefore, it is now possible to investigate how(More)
Neural systems include interactions that occur across many scales. Two divergent methods for characterizing such interactions have drawn on the physical analysis of critical phenomena and the mathematical study of information. Inferring criticality in neural systems has traditionally rested on fitting power laws to the property distributions of "neural(More)
The analysis of neural systems leverages tools from many different fields. Drawing on techniques from the study of critical phenomena in statistical mechanics, several studies have reported signatures of criticality in neural systems, including power-law distributions, shape collapses, and optimized quantities under tuning. Independently, neural(More)
Information theory is widely accepted as a powerful tool for analyzing complex systems and it has been applied in many disciplines. Recently, some central components of information theory, multivariate information measures, have found expanded use in the study of several phenomena. Despite this widespread use, there is disagreement regarding the(More)
  • 1