Learn More
Beta-range oscillatory activity measured over the motor cortex and beta synchrony between cortex and spinal cord can be up- or downregulated in anticipation of a postural challenge or the initiation of movement. Based on these properties of beta activity in the preparation for future events, the present investigation addressed whether simultaneous up- and(More)
A technique to study the three-dimensional (3D) mechanical characteristics of the ankle and of the subtalar joints in vivo and in vitro is described. The technique uses an MR scanner compatible 3D positioning and loading linkage to load the hindfoot with precise loads while the foot is being scanned. 3D image processing algorithms are used to derive from(More)
Common image-based diagnostic techniques used to detect ankle ligament injuries or the effects of those injuries (e.g., mechanical instability) include magnetic resonance imaging (MRI) and stress radiography. Each of these techniques has limitations. The interpretation of the results obtained through stress radiography, a two-dimensional technique, is(More)
Previous behavioral work has shown the existence of both anticipatory and reactive grip force responses to predictable load perturbations, but how the brain implements anticipatory control remains unclear. Here we recorded electroencephalographs while participants were subjected to predictable and unpredictable external load perturbations. Participants used(More)
This paper presents a novel robotic interface to investigate the neuromechanical control of redundant planar arm movements. A unique aspect of this device is the third axis by which the wrist, and hence the pose of the arm can be fully constrained. The topology is based on a 5R, closed loop pantograph, with a decoupled wrist flexion/extension cable actuated(More)
Figure S1: Proliferating carboxylic groups on the 15-porphyrin substituent leads to faster binding as seen by stopped flow measurements. Conditions: 2 µM of protein maquette in 20 mM CHES, 150 mM KCl mixed with one equivalent of porphyrin, either 5-phenyl-15-carboxy phenylporphyrin [9] (red) or 5-phenyl-15-Newkome phenylporphyrin [10] (green). Normalized(More)
Natural selection in photosynthesis has engineered tetrapyrrole based, nanometer scale, light harvesting and energy capture in light-induced charge separation. By designing and creating nanometer scale artificial light harvesting and charge separating proteins, we have the opportunity to reengineer and overcome the limitations of natural selection to extend(More)
  • 1