Learn More
The serine and cysteine proteases SspA and SspB of Staphylococcus aureus are secreted as inactive zymogens, zSspA and zSspB. Mature SspA is a trypsin-like glutamyl endopeptidase and is required to activate zSspB. Although a metalloprotease Aureolysin (Aur) is in turn thought to contribute to activation of zSspA, a specific role has not been demonstrated. We(More)
SUMMARY The Staphylococcus aureus proteolytic cascade consists of a metalloprotease aureolysin (Aur), which activates a serine protease zymogen proSspA, which in turn activates the SspB cysteine protease. As with other M4 metalloproteases, including elastase of Pseudomonas aeruginosa, the propeptide of proAur contains an N-terminal(More)
A crucial aspect of the functionality of bacterial type II secretion systems is the targeting and assembly of the outer membrane secretin. In the Klebsiella oxytoca type II secretion system, the lipoprotein PulS, a pilotin, targets secretin PulD monomers through the periplasm to the outer membrane. We present the crystal structure of PulS, an all-helical(More)
The lipoprotein PulS is a dedicated chaperone that is required to target the secretin PulD to the outer membrane in Klebsiella or Escherichia coli, and to protect it from proteolysis. Here, we present indirect evidence that PulD protomers do not assemble into the secretin dodecamer before they reach the outer membrane, and that PulS reaches the outer(More)
Staphylococcus aureus clonal complex CC30 has caused infectious epidemics for more than 60 years, and, therefore, provides a model system to evaluate how evolution has influenced the disease potential of closely related strains. In previous multiple genome comparisons, phylogenetic analyses established three major branches that evolved from a common(More)
UNLABELLED In Gram-negative bacteria, the Lol and Bam machineries direct the targeting of lipidated and nonlipidated proteins, respectively, to the outer membrane (OM). Using Pseudomonas aeruginosa strains with depleted levels of specific Bam and Lol proteins, we demonstrated a variable dependence of different OM proteins on these targeting pathways.(More)
The outer membrane (OM) of Gram-negative bacteria is designed to exclude potentially harmful molecules. This property presents a challenge for bacteria that must secrete proteins and large glycoconjugates to grow, divide, and persist. Proteins involved in trafficking such molecules have been identified, but their precise roles are often unresolved due to(More)
The scpAB and sspABC operons of Staphylococcus aureus encode Staphopain cysteine proteases ScpA and SspB, and their respective Staphostatins ScpB and SspC, which are thought to protect against premature activation of Staphopain precursors during protein export. However, we found that the proSspB precursor was secreted and activated without detriment to S.(More)
Interaction of bacterial outer membrane secretin PulD with its dedicated lipoprotein chaperone PulS relies on a disorder-to-order transition of the chaperone binding (S) domain near the PulD C terminus. PulS interacts with purified S domain to form a 1:1 complex. Circular dichroism, one-dimensional NMR, and hydrodynamic measurements indicate that the S(More)
The C-terminal core domain of the secretin PulD from Klebsiella oxytoca forms heat-resistant dodecameric complexes within less than 10min in an Escherichia coli in vitro transcription-translation system containing liposomes, and is toxic when made in the cytoplasm without a signal peptide. Random mutagenesis of DNA encoding this region of PulD revealed that(More)