Nicholas M. Glykos

Learn More
We report the availability of grcarma, a program encoding for a fully automated set of tasks aiming to simplify the analysis of molecular dynamics trajectories of biological macromolecules. It is a cross-platform, Perl/Tk-based front-end to the program carma and is designed to facilitate the needs of the novice as well as those of the expert user, while at(More)
A computer program has been developed to aid the analysis of molecular dynamics trajectories. The program is tuned for macromolecular large-scale problems and supports features such as removal of global translations-rotations of the solute, calculation of average distance maps and their corresponding standard deviations, calculation of the(More)
A computational solution to the protein folding problem is the holy grail of biomolecular simulation and of the corresponding force fields. The complexity of the systems used for folding simulations precludes a direct feedback between the simulations and the force fields, thus necessitating the study of simpler systems with sufficient experimental data to(More)
Conventional wisdom has it that the presence of disordered regions in the three-dimensional structures of polypeptides not only does not contribute significantly to the thermodynamic stability of their folded state, but, on the contrary, that the presence of disorder leads to a decrease of the corresponding proteins' stability. We have performed extensive(More)
Detailed knowledge of the influence of various parameters on macromolecular solubility is essential for crystallization. The concept of so-called 'ionic strength reducers' provides insight into the changes in solubility induced by organic solvents and hydrophilic polymers in aqueous electrolytic solutions. A simple and efficient procedure is presented which(More)
Conventional refinement methods, when applied to even correctly positioned polyalanine models of a target structure, result in a systematic distortion of the molecular geometry and to a concomitant increase in the mean phase difference from the correct phase set. Here, it is shown that iterative rigid-body simulated-annealing refinement of polyalanine(More)
We present Pinda, a Web service for the detection and analysis of possible duplications of a given protein or DNA sequence within a source species. Pinda fully automates the whole gene duplication detection procedure, from performing the initial similarity searches, to generating the multiple sequence alignments and the corresponding phylogenetic trees, to(More)
The distribution of the bulk-solvent correction parameters (B(sol), k(sol)) (as determined with an exponential scaling algorithm based on Babinet's principle) for 219 crystal structures deposited in the Protein Data Bank is presented. The distribution shows that (i) the range of values observed is far wider than the usually cited parameter range, (ii) the(More)
We examine the sensitivity of folding molecular dynamics simulations on the choice between three variants of the same force field (the AMBER99SB force field and its ILDN, NMR-ILDN, and STAR-ILDN variants). Using two different peptide systems (a marginally stable helical peptide and a β-hairpin) and a grand total of more than 20 μs of simulation time we show(More)
We describe a robust, fast, and memory-efficient procedure that can cluster millions of structures derived from molecular dynamics simulations. The essence of the method is based on a peak-picking algorithm applied to three-and five-dimensional distributions of the principal components derived from the trajectory and automatically supports both Cartesian(More)