Nicholas M. Contento

Learn More
Mechanical forces are critical but poorly understood inputs for organogenesis and wound healing. Calcium ions (Ca2+) are critical second messengers in cells for integrating environmental and mechanical cues, but the regulation of Ca2+ signaling is poorly understood in developing epithelial tissues. Here we report a chip-based regulated environment for(More)
An array of nanoscale-recessed ring-disk electrodes was fabricated using layer-by-layer deposition, nanosphere lithography, and a multistep reactive ion etching process. The resulting device was operated in generator-collector mode by holding the ring electrodes at a constant potential and performing cyclic voltammetry by sweeping the disk potential in(More)
Electrochemistry is a promising tool for microfluidic systems because it is relatively inexpensive, structures are simple to fabricate, and it is straight-forward to interface electronically. While most widely used in microfluidics for chemical detection or as the transduction mechanism for molecular probes, electrochemical methods can also be used to(More)
Electroosmotic flow (EOF) is used to enhance the delivery of Fe(CN)(6)(4-)/Fe(CN)(6)(3-) to an annular nanoband electrode embedded in a nanocapillary array membrane, as a route to high efficiency electrochemical conversions. Multilayer Au/polymer/Au/polymer membranes are perforated with 10(2)-10(3) cylindrical nanochannels by focused ion beam (FIB) milling(More)
conditions for intercellular Ca waves Cody E. Narciso, Nicholas M. Contento, Thomas J. Storey, David J. Hoelzle, Jeremiah J. Zartman * 1 Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana, USA 2 Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana, USA 3 Currently(More)
In canonical electrochemical experiments, a high-concentration background electrolyte is used, carrying the vast majority of current between macroscopic electrodes, thus minimizing the contribution of electromigration transport of the redox-active species being studied. In contrast, here large current enhancements are achieved in the absence of supporting(More)
Arrays of recessed ring-disk (RRD) electrodes with nanoscale spacing fabricated by multilayer deposition, nanosphere lithography, and multistep reactive ion etching were incorporated into nanofluidic channels. These arrays, which characteristically exhibit redox cycling leading to current amplification during cyclic voltammetry, can selectively analyze(More)
In situ generation of reactive species within confined geometries, such as nanopores or nanochannels is of significant interest in overcoming mass transport limitations in chemical reactivity. Solvent electrolysis is a simple process that can readily be coupled to nanochannels for the electrochemical generation of reactive species, such as H(2). Here the(More)
  • 1