Nicholas L. Wagner

Learn More
We report a previously undescribed spectroscopic probe that makes use of electrons rescattered during the process of high-order harmonic generation. We excite coherent vibrations in SF(6) using impulsive stimulated Raman scattering with a short laser pulse. A second, more intense laser pulse generates high-order harmonics of the fundamental laser, at(More)
Halogen atoms and oxides are highly reactive and can profoundly affect atmospheric composition. Chlorine atoms can decrease the lifetimes of gaseous elemental mercury and hydrocarbons such as the greenhouse gas methane. Chlorine atoms also influence cycles that catalytically destroy or produce tropospheric ozone, a greenhouse gas potentially toxic to plant(More)
Date The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline. High harmonic generation in atoms is well understood in terms of the three step model (ionization, propagation and recombination), and much(More)
A sensitive, small detector was developed for atmospheric NO2 and NOx concentration measurements. NO2 is directly detected by laser diode based cavity ring-down spectroscopy (CRDS) at 404 nm. The sum of NO and NO2 (=NOx) is simultaneously measured in a second cavity by quantitative conversion of ambient NO to NO2 in excess ozone. Interferences due to(More)
We use an ensemble of surface (EPA CSN, IMPROVE, SEARCH, AERONET), aircraft (SEACRS), and satellite (MODIS, MISR) observations over the southeast US during the summer–fall of 2013 to better understand aerosol sources in the region and the relationship between surface particulate matter (PM) and aerosol optical depth (AOD). The GEOS-Chem global chemical(More)
We demonstrate experimentally how the time-dependent phase modulation induced by molecular rotational wave packets can manipulate the phase and spectral content of ultrashort light pulses. Using impulsively excited rotational wave packets in CO2, we increase the bandwidth of a probe pulse by a factor of 9, while inducing a negative chirp. This chirp is(More)
We present the first demonstration of a new mechanism for temporal compression of ultrashort light pulses that operates at high (i.e., ionizing) intensities. By propagating pulses inside a hollow waveguide filled with low-pressure argon gas, we demonstrate a self-compression from 30 to 13 fs, without the need for any external dispersion compensation.(More)
The magnitude and sources of chlorine atoms in marine air remain highly uncertain but have potentially important consequences for air quality in polluted coastal regions. We made continuous measurements of ambient ClNO(2) and Cl(2) concentrations from May 15 to June 8 aboard the Research Vessel Atlantis during the CalNex 2010 field study. In the Los Angeles(More)
Ozone plays a key role in both the Earth's radiative budget and photochemistry. Accurate, robust analytical techniques for measuring its atmospheric abundance are of critical importance. Cavity ring-down spectroscopy has been successfully used for sensitive and accurate measurements of many atmospheric species. However, this technique has not been used for(More)
By combining laser pulse self-compression and high harmonic generation within a single waveguide, we demonstrate high harmonic emission from multiply charged ions for the first time. This approach enhances the laser intensity and counteracts ionization-induced defocusing, extending the cutoff photon energy in argon above 500 eV for the first time, with(More)