Nicholas J Strausfeld

Learn More
Phylogenetically conserved brain centers known as mushroom bodies are implicated in insect associative learning and in several other aspects of insect behavior. Kenyon cells, the intrinsic neurons of mushroom bodies, have been generally considered to be disposed as homogenous arrays. Such a simple picture imposes constraints on interpreting the diverse(More)
Mushroom bodies are prominent neuropils found in annelids and in all arthropod groups except crustaceans. First explicitly identified in 1850, the mushroom bodies differ in size and complexity between taxa, as well as between different castes of a single species of social insect. These differences led some early biologists to suggest that the mushroom(More)
Studies of the mushroom bodies of Drosophila melanogaster have suggested that their gamma lobes specifically support short-term memory, whereas their vertical lobes are essential for long-term memory. Developmental studies have demonstrated that the Drosophila gamma lobe, like its equivalent in the cockroach Periplaneta americana, is supplied by a special(More)
In the eye, visual information is segregated into modalities such as color and motion, these being transferred to the central brain through separate channels. Here, we genetically dissect the achromatic motion channel in the fly Drosophila melanogaster at the level of the first relay station in the brain, the lamina, where it is split into four parallel(More)
Although the importance of the Drosophila mushroom body in olfactory learning and memory has been stressed, virtually nothing is known about the brain regions to which it is connected. Using Golgi and GAL4-UAS techniques, we performed the first systematic attempt to reveal the anatomy of its extrinsic neurons. A novel presynaptic reporter construct,(More)
Golgi impregnations reveal a variety of dendritic morphologies amongst Kenyon cells in the mushroom bodies of Drosophila melanogaster. Different morphological types of Kenyon cells contribute axon-like processes to five divisions of the medial and vertical lobes. Four of these divisions have characteristic affinities to antibodies raised against aspartate,(More)
1. The organization of muscles that move the head was analysed from serial-section reconstructions of whole animals. Muscle innervation was resolved by reduced silver and ethyl gallate staining or by cobalt or Lucifer Yellow fills from single motor terminals at identified muscles. 2. The organization of cuticular attachments for neck muscles, and the(More)
A serum raised against conjugated octopamine reveals structurally comparable systems of perikarya and arborizations in protocerebral neuropils of two species of Diptera, Drosophila melanogaster and Phaenicia sericata; the latter is used extensively for electrophysiological studies of the optic lobes and their central projections. Clusters of cell bodies in(More)
Despite the importance of the insect nervous system for functional and developmental neuroscience, descriptions of insect brains have suffered from a lack of uniform nomenclature. Ambiguous definitions of brain regions and fiber bundles have contributed to the variation of names used to describe the same structure. The lack of clearly determined neuropil(More)
Conserved neural characters identified in the brains of a variety of segmented invertebrates and outgroups have been used to reconstruct phylogenetic relationships. The analysis suggests that insects and crustaceans are sister groups and that the 'myriapods' are an artificial construct comprising unrelated chilopods and diplopods. Certain elements of the(More)