Learn More
Loss of the ability of Pseudomonas syringae pv. "phaseolicola" NPS3121 to elicit a hypersensitive response on tobacco and other nonhost plants was associated with loss of pathogenicity on the susceptible host bean. Eight independent, prototrophic transposon Tn5 insertion mutants which had lost the ability to elicit a hypersensitive response on tobacco(More)
The hrp gene clusters of plant pathogenic bacteria control pathogenicity on their host plants and ability to elicit the hypersensitive reaction in resistant plants. Some hrp gene products constitute elements of the type III secretion system, by which effector proteins are exported and delivered into plant cells. Here, we show that the hrpZ gene product from(More)
A small family of at least four genes encoding melon ascorbate oxidase (AO) has been identified and three members of it have been cloned. Preliminary DNA sequence determination suggested that melon AO genes code for enzymes homologous to ascorbate oxidases from other plants and similar to other multicopper oxidases. We describe detailed molecular studies(More)
The central role of Type III secretion systems (T3SS) in bacteria-plant interactions is well established, yet unexpected findings are being uncovered through bacterial genome sequencing. Some Pseudomonas syringae strains possess an uncharacterized cluster of genes encoding putative components of a second T3SS (T3SS-2) in addition to the well characterized(More)
Epiphytic populations of Pseudomonas syringae and Erwinia herbicola are important sources of ice nuclei that incite frost damage in agricultural crop plants. We have cloned and characterized DNA segments carrying the genes (ice) responsible for the ice-nucleating ability of these bacteria. The ice region spanned 3.5 to 4.0 kilobases and was continuous over(More)
Ice nucleation activity and the iceC gene product were quantified in different subcellular fractions of the Pseudomonas syringae source strain and in Escherichia coli containing the cloned iceC gene to determine the activity of this protein in different subcellular locations. Ice nuclei were nearly completely retained during isolation of cell envelopes but(More)
Quantitative real-time polymerase chain reaction was used with specific TaqMan probes to examine transcription of selected hrp and effector genes in Pseudomonas syringae pv. phaseolicola strains 1448A (race 6) and 1449B (race 7). Transcripts examined were from genes encoding the regulators hrpR and hrpL, core structural components of the type III secretion(More)
Type III secretion systems enable plant and animal bacterial pathogens to deliver virulence proteins into the cytosol of eukaryotic host cells, causing a broad spectrum of diseases including bacteremia, septicemia, typhoid fever, and bubonic plague in mammals, and localized lesions, systemic wilting, and blights in plants. In addition, type III secretion(More)
A ca. 20-kilobase (kb) region (hrp) that controls the interaction of Pseudomonas syringae pv. phaseolicola with its host (pathogenicity) and nonhost plants (hypersensitive reaction) was previously cloned and partially characterized. In this study we defined the limits and determined the nucleotide sequence of a hrp locus (hrpS), located near the right end(More)
Pseudomonas aureofaciens PGS12 produces three phenazine antibiotics, in addition to siderophores, hydrogen cyanide, pyrrolnitrin, and indoleacetic acid. Tn5-259.7 transposon mutagenesis was carried out to identify and clone a chromosomal locus involved in phenazine biosynthesis. Three classes of mutants were obtained: mutants deficient in phenazine(More)