Nicholas J. Morley

Learn More
The oxygen control of denitrification and its emission of NO/N2O/N2 was investigated by incubation of Nycodenz-extracted soil bacteria in an incubation robot which monitors O2, NO, N2O and N2 concentrations (in He+O2 atmosphere). Two consecutive incubations were undertaken to determine (1) the regulation of denitrification by O2 and NO2(-) during(More)
The microbial processes of denitrification and dissimilatory nitrate reduction to ammonium (DNRA) are two important nitrate reducing mechanisms in soil, which are responsible for the loss of nitrate ([Formula: see text]) and production of the potent greenhouse gas, nitrous oxide (N(2)O). A number of factors are known to control these processes, including(More)
The increase in atmospheric nitrous oxide (N₂O), a potent greenhouse and ozone depleting gas, is of serious global concern. Soils are large contributors to this increase through microbial processes that are enhanced in agricultural land due to nitrogenous fertilizer applications. Denitrification, a respiratory process using nitrogen oxides as electron(More)
The intrinsic nitrogen (N) supply capacity of soil is central to understanding the productivity of natural plant communities, and essential in the context of determining optimal fertilization rates for agricultural soils. However, it is largely unknown how nutrient availability affects plant mediated priming effects driving soil organic matter(More)
  • 1