Nicholas J Kenyon

Learn More
Arginase has been suggested to compete with nitric oxide synthase (NOS) for their common substrate, l-arginine. To study the mechanisms underlying this interaction, we compared arginase expression in isolated airways and the consequences of inhibiting arginase activity in vivo with NO production, lung inflammation, and lung function in both C57BL/6 and NOS2(More)
BACKGROUND Subepithelial collagen and extracellular matrix protein deposition are important pathophysiological components of airway remodelling in chronic asthma. Animal models based on the local reaction to antigens show structural alterations in the airway submucosal region and provide important information regarding disease pathophysiology. We describe a(More)
It has been shown that morphologic and biochemical presynaptic markers of dopaminergic terminals are preserved in a unilateral experimental model of neonatal hypoxic-ischemic injury to the striatum. As the substantia nigra is spared direct injury in this model, we anticipated that the number of tyrosine hydroxylase-positive dopaminergic neurons projecting(More)
Rats or mice acutely exposed to high concentrations of ozone show an immediate and significant weight loss, even when allowed free access to food and water. The mechanisms underlying this systemic response to ozone have not been previously elucidated. We have applied the technique of global gene expression analysis to the livers of C57BL mice acutely(More)
The Th1/Th2 paradigm has become an important issue in the pathogenesis of asthma, characterized by normal Th1 and elevated Th2 cytokine expression. Vitamin A deficiency (VAD) can produce a Th1 bias, whereas high-level dietary vitamin A can promote a Th2 bias. We used the OVA exposure mouse model to determine the contributions of vitamin A-deficient, control(More)
A murine model of allergen-induced airway inflammation was used to examine the effects of exposure to ultrafine particles (PM(2.5)) on airway inflammation and remodeling. Lung inflammation was measured by quantitative differential evaluation of lung lavage cells. Alterations in lung structure (airway remodeling and fibrosis) were evaluated by quantitative(More)
BALB/c mice were sensitized to ovalbumin by systemic injection and then exposed for up to 8 weeks to ovalbumin aerosols in whole body chambers. A pattern of airway inflammation, mucous cell hypertrophy and hyperplasia, and airway remodeling with submucosal fibrosis was observed as lesions evolved over time. Larger conducting airways were removed from the(More)
Liu J, Sakurai R, O’Roark EM, Kenyon NJ, Torday JS, Rehan VK. PPAR agonist rosiglitazone prevents perinatal nicotine exposure-induced asthma in rat offspring. Am J Physiol Lung Cell Mol Physiol 300: L710 –L717, 2011. First published February 25, 2011; doi:10.1152/ajplung.00337.2010.—Perinatal exposure to maternal smoke is associated with adverse pulmonary(More)
Arginase gene expression in the lung has been linked to asthma both in clinical studies of human patients and in the well-studied mouse model of ovalbumin-induced airway inflammation. Arginase is thought to regulate NO levels in the lung by its ability to divert arginine, the substrate for nitric oxide synthases that produce citrulline and NO, into an(More)
In a previous study, we showed that BALB/c mice demonstrate significant increases in accumulation of airway collagen after 4 weeks of exposure to ovalbumin aerosol. In the current study we examined the response to ovalbumin aerosol of a different strain of mice, C57BL/6, and compared this response to an otherwise isogenic C57BL strain (iNOS(-/-)) in which(More)