Learn More
The Aurora/Ipl1 family of protein kinases plays multiple roles in mitosis and cytokinesis. Here, we describe ZM447439, a novel selective Aurora kinase inhibitor. Cells treated with ZM447439 progress through interphase, enter mitosis normally, and assemble bipolar spindles. However, chromosome alignment, segregation, and cytokinesis all fail. Despite the(More)
Resistance to cancer therapies presents a significant clinical challenge. Recent studies have revealed intratumoral heterogeneity as a source of therapeutic resistance. However, it is unclear whether resistance is driven predominantly by pre-existing or de novo alterations, in part because of the resolution limits of next-generation sequencing. To address(More)
Sequence data are presented for the Saccharomyces cerevisiae TAP1 gene and for a mutant allele, tap1-1, that activates transcription of the promoter-defective yeast SUP4 tRNA(Tyr) allele SUP4A53T61. The degree of in vivo activation of this allele by tap1-1 is strongly affected by the nature of the flanking DNA sequences at 5'-flanking DNA sequences as far(More)
The non-receptor protein tyrosine phosphatase SHP2, encoded by PTPN11, has an important role in signal transduction downstream of growth factor receptor signalling and was the first reported oncogenic tyrosine phosphatase. Activating mutations of SHP2 have been associated with developmental pathologies such as Noonan syndrome and are found in multiple(More)
5-Methylthioadenosine phosphorylase (MTAP) is a key enzyme in the methionine salvage pathway. The MTAP gene is frequently deleted in human cancers because of its chromosomal proximity to the tumor suppressor gene CDKN2A. By interrogating data from a large-scale short hairpin RNA-mediated screen across 390 cancer cell line models, we found that the viability(More)
The histone methyltransferase Enhancer of Zeste Homolog 2 (EZH2) is frequently dysregulated in cancers, and gain-of-function (GOF) EZH2 mutations have been identified in non-Hodgkin lymphomas. Small-molecule inhibitors against EZH2 demonstrated anti-tumor activity in EZH2-mutated lymphomas and entered clinical trials. Here, we developed models of acquired(More)
The TMPRSS2:ERG gene fusion is common in androgen receptor (AR) positive prostate cancers, yet its function remains poorly understood. From a screen for functionally relevant ERG interactors, we identify the arginine methyltransferase PRMT5. ERG recruits PRMT5 to AR-target genes, where PRMT5 methylates AR on arginine 761. This attenuates AR recruitment and(More)
  • 1