Learn More
The phenotypically similar hamster mutants irs1 and irs1SF exhibit high spontaneous chromosome instability and broad-spectrum mutagen sensitivity, including extreme sensitivity to DNA cross-linking agents. The human XRCC2 and XRCC3 genes, which functionally complement irs1 and irs1SF, respectively, were previously mapped in somatic cell hybrids.(More)
The V79-4 Chinese hamster line was mutagenized and surviving clones screened for X-ray sensitivity using a replica microwell technique. One slightly sensitive clone and 3 clearly sensitive clones were isolated from approximately 5000 screened, and designated irs 1 to irs 4. The 3 more sensitive clones showed different responses to the genotoxic agents(More)
The V79 hamster cell line irs1 is a repair-deficient mutant hypersensitive to radiation and DNA-reactive chemical agents. Somatic cell hybrids were formed by fusing irs1 cells with human lymphocytes and selecting for complementation in medium containing concentrations of mitomycin C (MMC) that are toxic to irs1. Thirty-eight MMC-resistant hybrids showed(More)
We describe the cloning and function of the human XRCC1 gene, which is the first mammalian gene isolated that affects cellular sensitivity to ionizing radiation. The CHO mutant EM9 has 10-fold-higher sensitivity to ethyl methanesulfonate, 1.8-fold-higher sensitivity to ionizing radiation, a reduced capacity to rejoin single-strand DNA breaks, and a(More)
Two mutants of the Chinese hamster cell line V79-4 (irs1 and irs2) were previously isolated on the basis of their hypersensitivity (2- to 3-fold) to cell inactivation by ionizing radiation. One of these mutants, irs1, displays an unusual phenotype of cross-sensitivity to other varied genotoxic agents including UV light (2- to 3-fold), ethyl(More)
Fanconi anemia (FA) is a human disorder characterized by cancer susceptibility and cellular sensitivity to DNA crosslinks and other damages. Thirteen complementation groups and genes are identified, including BRCA2, which is defective in the FA-D1 group. Eight of the FA proteins, including FANCG, participate in a nuclear core complex that is required for(More)
Fanconi anemia (FA) is a human autosomal disorder characterized by cancer susceptibility and cellular sensitivity to DNA crosslinking agents such as mitomycin C and diepoxybutane. Six FA genes have been cloned including a gene designated XRCC9 (for X-ray Repair Cross Complementing), isolated using a mitomycin C-hypersensitive Chinese hamster cell mutant(More)
A coordinated study was carried out on the development, evaluation and application of biomonitoring procedures for populations exposed to environmental genotoxic pollutants. The procedures used involved both direct measurement of DNA or protein damage (adducts) and assessment of second biological effects (mutation and cytogenetic damage). Adduct detection(More)
Using a replica plating microwell method, three Chinese hamster V79-derived cell lines, designated ETO1, ETO2 and ETO3, which exhibit hypersensitivity to the non-intercalating topoisomerase II inhibitor etoposide have been isolated. Mutant lines ETO2 and ETO3 are cross-sensitive to the topoisomerase II inhibitors adriamycin and streptonigrin; however,(More)
A new mitomycin C (MMC)-sensitive rodent line, UV40, has been identified in the collection of ultraviolet light- (UV-) sensitive mutants of Chinese hamster ovary (CHO) cells isolated at the previous Facility for Automated Experiments in Cell Biology (FAECB). It was isolated from an UV mutant hunt using mutagenesis of AA8 cells with the DNA intercalating(More)