Nicholas J Bernier

Learn More
We describe duplicate leptin genes in zebrafish (Danio rerio) that share merely 24% amino acid identity with each other and only 18% with human leptin. We were also able to retrieve a second leptin gene in medaka (Oryzias latipes). The presence of duplicate leptin genes in these two distantly related teleosts suggests that duplicate leptin genes are a(More)
The brain, particularly the hypothalamus, integrates input from factors that stimulate (orexigenic) and inhibit (anorexigenic) food intake. In fish, the identification of appetite regulators has been achieved by the use of both peptide injections followed by measurements of food intake, and by molecular cloning combined with gene expression studies.(More)
Although environmental, social and physical stressors have been shown to inhibit food intake and feeding behavior in fish, little is known about the mechanisms that mediate the appetite-suppressing effects of stress. Since the hypothalamic-pituitary-interrenal (HPI) axis is activated in response to most forms of stress in fish, components of this axis may(More)
Although elevated plasma cortisol levels and a reduction in food intake are common features of the response to stress in fish, the potential role of cortisol in the regulation of food intake in these animals is poorly understood. In this study, goldfish (Carassius auratus) were fed ad libitum for 21 days diets prepared to contain 0 (Control), 50 (Low) or(More)
A characteristic feature of the behavioural response to intensely acute or chronic stressors is a reduction in appetite. In fish, as in other vertebrates, the corticotropin-releasing factor (CRF) system plays a key role in coordinating the neuroendocrine, autonomic, and behavioural responses to stress. The following review documents the evidence implicating(More)
Environmental hypercapnia induces a respiratory acidosis that is usually compensated within 24-96 h in freshwater fish. Water ionic composition has a large influence on both the rate and degree of pH recovery during hypercapnia. Waters of the Amazon are characteristically dilute in ions, which may have consequences for acid-base regulation during(More)
In mammals, the orexigenic and anorexigenic neuronal systems are morphologically and functionally connected, forming an interconnected network in the hypothalamus to govern food intake and body weight. However, there are relatively few studies on the brain control of feeding behavior in fish. Recent studies using mammalian neuropeptides or fish homologs of(More)
Fish urotensin I (UI), a member of the corticotropin-releasing hormone (CRH) family of peptides, is a potent inhibitor of food intake in mammals, yet the role of UI in the control of food intake in fish is not known. Therefore, to determine the acute effects of UI on appetite relative to those of CRH, goldfish were given intracerebroventricular (i.c.v.)(More)
Corticotropin-releasing factor (CRF) and urotensin I (UI) precursor cDNAs were cloned and sequenced from a goldfish brain cDNA library in order to investigate the distribution of CRF and UI mRNAs in goldfish brain and the regulation of CRF and UI gene expression. The CRF (966-bp) and UI (769-bp) cDNAs encode 163- and 146-amino acid precursors, respectively,(More)
In fish, the catecholamine hormones adrenaline and noradrenaline are released into the circulation, from chromaffin cells, during numerous 'stressful' situations. The physiological and biochemical actions of these hormones (the efferent adrenergic response) have been the focus of numerous investigations over the past several decades. However, until(More)