Nicholas Hai Liang Chua

Learn More
The cycling bioluminescence of Arabidopsis plants carrying a firefly luciferase fusion construct was used to identify mutant individuals with aberrant cycling patterns. Both long- and short-period mutants were recovered. A semidominant short-period mutation, timing of CAB expression (toc1), was mapped to chromosome 5. The toc1 mutation shortens the period(More)
Transgenic Arabidopsis plants expressing a luciferase gene fused to a circadian-regulated promoter exhibited robust rhythms in bioluminescence. The cyclic luminescence has a 24.7-hour period in white light but 30- to 36-hour periods under constant darkness. Either red or blue light shortened the period of the wild type to 25 hours. A phytochrome-deficient(More)
We have previously used single-cell assays in a phytochrome-deficient tomato mutant to demonstrate that phytochrome signaling involves heterotrimeric G proteins, calcium, and calmodulin. While G protein activation could stimulate full chloroplast development and anthocyanin pigment biosynthesis, calcium and calmodulin could not induce anthocyanins and were(More)
Although promoter regions for many plant nuclear genes have been sequenced, identification of the active promoter sequence has been carried out only for the octopine synthase promoter. That analysis was of callus tissue and made use of an enzyme assay. We have analysed the effects of 5' deletions in a plant viral promoter in tobacco callus as well as in(More)
The import of large molecules into the nucleus is an active process that requires the presence in cis of a nuclear localization signal (NLS). Although these signals have been well characterized in mammalian, yeast, and amphibian nuclear proteins, no plant NLS has yet been described. The NLSs identified so far generally contain clusters of basic amino acids.(More)
ACGT cis-acting DNA sequence elements have been identified in a multitude of plant genes regulated by diverse environmental, physiological, and environmental cues. In vivo transient and transgenic plant expression studies have shown that these ACGT elements are necessary for maximal transcriptional activation. Plants possess a conserved family of(More)
The photoreceptor phytochrome (phy) A has a well-defined role in regulating gene expression in response to specific light signals. Here, we describe a new Arabidopsis mutant, laf1 (long after far-red light 1) that has an elongated hypocotyl specifically under far-red light. Gene expression studies showed that laf1 has reduced responsiveness to continuous(More)
The role of inositol 1,4,5-trisphosphate (Ins[1,4,5]P3) in transducing the abscisic acid (ABA) signal during seed germination and in the stress responses of mature plants is poorly understood. We have considered the contributions of the phospholipase C1 (encoded by AtPLC1) and an Ins(1,4,5)P3 5-phosphatase (encoded by AtIP5PII) to ABA signaling by using a(More)
Transgenic tobacco plants carrying a number of regulatory sequences derived from the cauliflower mosaic virus 35S promoter were tested for their response to treatment with salicylic acid (SA), an endogenous signal involved in plant defense responses. beta-Glucuronidase (GUS) gene fusions with the full-length (-343 to +8) 35S promoter or the -90 truncation(More)
The general transcription initiation factor TFIID plays a primary part in the activation of eukaryotic genes transcribed by RNA polymerase II. Binding of TFIID to the TATA box initiates the assembly of other general transcription factors as well as RNA polymerase II at the promoter resulting in a preinitiation complex capable of accurate transcription(More)