Nicholas F . Endres

Learn More
Signaling by the epidermal growth factor receptor requires an allosteric interaction between the kinase domains of two receptors, whereby one activates the other. We show that the intracellular juxtamembrane segment of the receptor, known to potentiate kinase activity, is able to dimerize the kinase domains. The C-terminal half of the juxtamembrane segment(More)
How the epidermal growth factor receptor (EGFR) activates is incompletely understood. The intracellular portion of the receptor is intrinsically active in solution, and to study its regulation, we measured autophosphorylation as a function of EGFR surface density in cells. Without EGF, intact EGFR escapes inhibition only at high surface densities. Although(More)
Dimerization-driven activation of the intracellular kinase domains of the epidermal growth factor receptor (EGFR) upon extracellular ligand binding is crucial to cellular pathways regulating proliferation, migration, and differentiation. Inactive EGFR can exist as both monomers and dimers, suggesting that the mechanism regulating EGFR activity may be(More)
Kinesins are microtubule-based motor proteins that power intracellular transport. Most kinesin motors, exemplified by Kinesin-1, move towards the microtubule plus end, and the structural changes that govern this directional preference have been described. By contrast, the nature and timing of the structural changes underlying the minus-end-directed motility(More)
The assembly and function of cilia on Caenorhabditis elegans neurons depends on the action of two kinesin-2 motors, heterotrimeric kinesin-II and homodimeric OSM-3-kinesin, which cooperate to move the same intraflagellar transport (IFT) particles along microtubule (MT) doublets. Using competitive in vitro MT gliding assays, we show that purified kinesin-II(More)
OSM-3 is a Kinesin-2 family member from Caenorhabditis elegans that is involved in intraflagellar transport (IFT), a process essential for the construction and maintenance of sensory cilia. In this study, using a single-molecule fluorescence assay, we show that bacterially expressed OSM-3 in solution does not move processively (multiple steps along a(More)
Intrafl agellar transport (IFT) of particles containing structural and signaling proteins is critical to building and maintaining cilia and fl agella (Kozminski et al., 1993; Rosenbaum and Witman, 2002; Scholey, 2003). Defects in IFT in humans can give rise to dysfunctional cilia and produce a variety of disease states (Pazour and Rosenbaum, 2002). Sensory(More)
In contrast to the active conformations of protein kinases, which are essentially the same for all kinases, inactive kinase conformations are structurally diverse. Some inactive conformations are, however, observed repeatedly in different kinases, perhaps reflecting an important role in catalysis. In this review, we analyze one of these recurring(More)
The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase involved in cell growth that is often misregulated in cancer. Several recent studies highlight the unique structural mechanisms involved in its regulation. Some elucidate the important role that the juxtamembrane segment and the transmembrane helix play in stabilizing the activating(More)
The activation of receptor tyrosine kinases in response to extracellular signals is a principal component of metazoan signaling. Structural analysis of the extracellular and intracellular domains of these receptors has shed substantial light on the mechanisms underlying their activation. A remaining challenge is to understand how these domains operate(More)