Nicholas David Jordan

Learn More
Studies of the molecular and biochemical basis of self-incompatibility (SI) in Papaver rhoeas have revealed much about the signalling pathways triggered in pollen early in this response. The aim of the current investigation was to begin to study downstream events in order to elucidate some of the later cellular responses involved in the SI response and(More)
Transcript profiling was used to look for genes that differ in expression between the SAH hydrolase deficient and hypomethylated hog1-1 mutant and the parental (HOG1) line. This analysis identified a subset of gene transcripts that were up-regulated in hog1-1 plants. The majority of these transcripts were from genes located in the pericentromeric(More)
The self-incompatibility response involves S allele-specific recognition between stigmatic S proteins and incompatible pollen. This response results in pollen inhibition. Defining the amino acid residues within the stigmatic S proteins that participate in S allele-specific inhibition of incompatible pollen is essential for the elucidation of the molecular(More)
The self-incompatibility response involves S-allele specific recognition between stigmatic S proteins and incompatible pollen, resulting in S-specific pollen inhibition. In Papaver rhoeas, the pollen S gene product is predicted to be a receptor that interacts with the stigmatic S protein in an S specific manner. We recently identified an S protein binding(More)
  • 1