Nicholas D. Vine

Learn More
Four transgenic Nicotiana tabacum plants were generated that expressed a murine monoclonal antibody kappa chain, a hybrid immunoglobulin A-G heavy chain, a murine joining chain, and a rabbit secretory component, respectively. Successive sexual crosses between these plants and filial recombinants resulted in plants that expressed all four protein chains(More)
A functional comparison was made between a monoclonal secretory antibody generated in transgenic plants and its parent murine IgC antibody .The affinity constants of both antibodies for a Streptococcus mutans adhesion protein were similar. However the secretory antibody had a higher functional affinity due to its dimeric structure. In the human oral cavity,(More)
The secretion of a functional, full-length monoclonal antibody complex from transgenic Nicotiana tabacum roots has been demonstrated. Initially, seeds were germinated on nitrocellulose membranes and antibody secretion detected from the developing roots. Plants were then established in hydroponic culture and secretion into the growth medium measured over 25(More)
Secretory immunoglobulin (Ig) A is a decameric Ig composed of four alpha-heavy chains, four light chains, a joining (J) chain, and a secretory component (SC). The heavy and light chains form two tetrameric Ig molecules that are joined by the J chain and associate with the SC. Expression of a secretory monoclonal antibody in tobacco (Nicotiana tabacum) has(More)
The cDNA encoding a full-length murine immunoglobulin γ1 heavy chain with its native leader sequence, transmembrane and intracellular domains was introduced into transgenic plants. Transformed plants expressed the recombinant polypeptide, but, in contrast to plants expressing the heavy chain without transmembrane sequence, the protein appeared to be(More)
Since plants are emerging as an important system for the expression of recombinant glycoproteins, especially those intended for therapeutic purposes, it is important to scrutinize to what extent glycans harbored by mammalian glycoproteins produced in transgenic plants differ from their natural counterpart. We report here the first detailed analysis of the(More)
Previous studies have shown that the production of recombinant antibodies in plants is highly efficient and presents numerous therapeutic applications. It is, however, known that plant glycoproteins display different glycosylation patterns to those exhibited by mammalian glycoproteins. Thus, it is important to know if these plant recombinant antibodies(More)
The feasibility of using antibody expressing transgenic plants either to neutralize bioactive molecules in the rhizosphere, or to accumulate and concentrate the molecules in leaves has been demonstrated in a model system consisting of hydroponic Nicotiana plant cultures expressing a murine monoclonal IgG1. Two transgenic plant types were used; in the first,(More)
Phthalic acid esters concentration-dependently inhibited the formation of both cyclo-oxygenase and lipoxygenase arachidonate products by rat peritoneal leucocytes. Phthalates are extracted by human transfusion blood stored in pvc bags, and might similarly affect the blood cells when administered to patients.