Learn More
Vertebrate segmentation has been proposed as an evolutionary inheritance either from some metameric protostome or from a more closely related deuterostome. To address this question, we studied the developmental expression of AmphiEn, the engrailed gene of amphioxus, the closest living invertebrate relative of the vertebrates. In neurula embryos of(More)
The dynamic expression patterns of the single amphioxus Distal-less homolog (AmphiDll) during development are consistent with successive roles of this gene in global regionalization of the ectoderm, establishment of the dorsoventral axis, specification of migratory epidermal cells early in neurulation and the specification of forebrain. Such a multiplicity(More)
A LIM-homeobox gene, AmphiLim1/5, from the Florida amphioxus (Branchiostoma floridae) encodes a protein that phylogenetic analysis positions at the base of a clade comprising vertebrate Lim1 and Lim5. Amphioxus AmphiLim1/5 is expressed in domains that are a composite of those of vertebrate Lim1 and Lim5, which evidently underwent subfunctionalization after(More)
The marine spongeTheonella swinhoei (lithistid Family Theonellidae, Order Astrophorida) has yielded many important, bioactive natural products, most of which share structural features with bacterial natural products. The presence of microbial symbionts inT. swinhoei has been reported, and it was originally suggested that the cytotoxic macrolide swinholide A(More)
Class I paired box genes are widely distributed through the animal phyla but only fruitfly Pox meso and vertebrate Pax-1 and Pax-9 have been adequately characterized. These vertebrate genes have several developmental functions, but their role in patterning the axial skeleton has received the most attention. Because axial skeletons appear after the origin of(More)
The embryology of amphioxus has much in common with vertebrate embryology, reflecting a close phylogenetic relationship between the two groups. Amphioxus embryology is simpler in several key respects, however, including a lack of pronounced craniofacial morphogenesis. To gain an insight into the molecular changes that accompanied the evolution of vertebrate(More)
Amphioxus probably has only a single gene (AmphiPax3/7) in the Pax3/7 subfamily. Like its vertebrate homologs (Pax3 and Pax7), amphioxus AmphiPax3/7 is probably involved in specifying the axial musculature and muscularized notochord. During nervous system development, AmphiPax3/7 is first expressed in bilateral anteroposterior stripes along the edges of the(More)
Excess all-trans retinoic acid (RA) causes severe craniofacial malformations in vertebrate embryos: pharyngeal arches are fused or absent, and a rostrad expansion of Hoxb-1 expression in the hindbrain shows that anterior rhombomeres are homeotically respecified to a more posterior identity. As a corollary, neural crest migration into the pharyngeal arches(More)
Pax-6 genes have been identified from a broad range of invertebrate and vertebrate animals and shown to be always involved in early eye development. Therefore, it has been proposed that the various types of eyes evolved from a single eye prototype, by a Pax-6-dependent mechanism. Here we describe the characterization of a cephalochordate Pax-6 gene. The(More)
The lower chordate amphioxus, widely considered the closest living invertebrate relative of the vertebrates, is a key organism for understanding the relationship between gene duplications and evolution of the complex vertebrate body plan. In tetrapod vertebrates, the alkali myosin light chain genes (MLC-alk), which code for proteins associated with the(More)