Learn More
Failure of pathogenic fungi to breach the plant cell wall constitutes a major component of immunity of non-host plant species--species outside the pathogen host range--and accounts for a proportion of aborted infection attempts on 'susceptible' host plants (basal resistance). Neither form of penetration resistance is understood at the molecular level. We(More)
Toxicity due to high levels of soil boron (B) represents a significant limitation to cereal production in some regions, and the Bo1 gene provides a major source of B toxicity tolerance in bread wheat (Triticum aestivum L.). A novel approach was used to develop primers to amplify and sequence gene fragments specifically from the Bo1 region of the hexaploid(More)
The Rp1-D gene for resistance to maize common rust (Puccinia sorghi) is a member of a complex locus (haplotype) composed of Rp1-D and approximately eight other gene homologs. The identity of Rp1-D was demonstrated by using two independent gene-tagging approaches with the transposons Mutator and Dissociation. PIC20, a disease resistance (R) gene analog probe(More)
Lack of the barley (Hordeum vulgare) seven-transmembrane domain MLO protein confers resistance against the fungal pathogen Blumeria graminis f. sp. hordei (Bgh). To broaden the basis for MLO structure/function studies, we sequenced additional mlo resistance alleles, two of which confer only partial resistance. Wild-type MLO dampens the cell wall-restricted(More)
Both limiting and toxic soil concentrations of the essential micronutrient boron represent major limitations to crop production worldwide. We identified Bot1, a BOR1 ortholog, as the gene responsible for the superior boron-toxicity tolerance of the Algerian barley landrace Sahara 3771 (Sahara). Bot1 was located at the tolerance locus by high-resolution(More)
Many of the plant disease resistance genes that have been isolated encode proteins with a putative nucleotide binding site and leucine-rich repeats (NBS-LRR resistance genes). Oligonucleotide primers based on conserved motifs in and around the NBS of known NBS-LRR resistance proteins were used to amplify sequences from maize genomic DNA by polymerase chain(More)
Within the cereal grasses, variation in inflorescence architecture results in a conspicuous morphological diversity that in crop species influences the yield of cereal grains. Although significant progress has been made in identifying some of the genes underlying this variation in maize and rice, in the temperate cereals, a group that includes wheat,(More)
Rp1 is a complex rust resistance locus of maize. The HRp1-D haplotype is composed of Rp1-D and eight paralogues, seven of which also code for predicted nucleotide binding site-leucine rich repeat (NBS-LRR) proteins similar to the Rp1-D gene. The paralogues are polymorphic (DNA identities 91-97%), especially in the C-terminal LRR domain. The remaining family(More)
Previous work identified the wild barley (Hordeum vulgare ssp. spontaneum) accession CPI-71284-48 as being capable of limiting sodium (Na(+)) accumulation in the shoots under saline hydroponic growth conditions. Quantitative trait locus (QTL) analysis using a cross between CPI-71284-48 and a selection of the cultivated barley (H. vulgare ssp. vulgare)(More)
A major gene-rich region on the end of the long arm of Triticeae group 2 chromosomes exhibits high recombination frequencies, making it an attractive region for positional cloning. Traits known to be controlled by this region include chasmogamy/cleistogamy, frost tolerance at flowering, grain yield, head architecture, and resistance to Fusarium head blight(More)