Nicholas Ayache

Learn More
Tensors are nowadays a common source of geometric information. In this paper, we propose to endow the tensor space with an affine-invariant Riemannian metric. We demonstrate that it leads to strong theoretical properties: the cone of positive definite symmetric matrices is replaced by a regular and complete manifold without boundaries (null eigenvalues are(More)
Diffusion tensor imaging (DT-MRI or DTI) is an emerging imaging modality whose importance has been growing considerably. However, the processing of this type of data (i.e., symmetric positive-definite matrices), called "tensors" here, has proved difficult in recent years. Usual Euclidean operations on matrices suffer from many defects on tensors, which have(More)
We propose an efficient non-parametric diffeomorphic image registration algorithm based on Thirion's demons algorithm. In the first part of this paper, we show that Thirion's demons algorithm can be seen as an optimization procedure on the entire space of displacement fields. We provide strong theoretical roots to the different variants of Thirion's demons(More)
In this work we present a new generalization of the geometric mean of positive numbers on symmetric positive-definite matrices, called Log-Euclidean. The approach is based on two novel algebraic structures on symmetric positive-definite matrices: first, a lie group structure which is compatible with the usual algebraic properties of this matrix space;(More)
In this paper we report the set-up and results of the Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) organized in conjunction with the MICCAI 2012 and 2013 conferences. Twenty state-of-the-art tumor segmentation algorithms were applied to a set of 65 multi-contrast MR scans of low- and high-grade glioma patients-manually annotated by up to four(More)
Detection of tubular structures in 3D images is an important issue for vascular medical imaging. We present in this paper a new approach for centerline detection and reconstruction of 3D tubular structures. Several models of vessels are introduced for estimating the sensitivity of the image second order derivatives according to elliptical cross-section, to(More)
A new method has been designed to identify and locate objects lying on a flat surface. The merit of the approach is to provide strong robustness to partial occlusions (due for instance to uneven lighting conditions, shadows, highlights, touching and overlapping objects) thanks to a local and compact description of the objects boundaries and to a new fast(More)
In this article, we focus on the computation of statistics of invertible geometrical deformations (i.e., diffeomorphisms), based on the generalization to this type of data of the notion of principal logarithm. Remarkably, this logarithm is a simple 3D vector field, and is well-defined for diffeomorphisms close enough to the identity. This allows to perform(More)