Learn More
Radiocaesium activity concentrations in the fruit-bodies of some species of macrofungi are higher than in many other foodstuffs. The consumption of fruit-bodies contributes significantly to radiocaesium intake of humans in some countries. In the United Kingdom, the collection of wild fungi has generally been considered to be of minor importance and there(More)
A number of models have recently been, or are currently being, developed to enable the assessment of radiation doses from ionising radiation to non-human species. A key component of these models is the ability to predict whole-organism activity concentrations in a wide range of wildlife. In this paper, we compare the whole-organism activity concentrations(More)
An ability to predict radionuclide activity concentrations in biota is a requirement of any method assessing the exposure of biota to ionising radiation. Within the ERICA Tool fresh weight whole-body activity concentrations in organisms are estimated using concentration ratios (the ratio of the activity concentration in the organism to the activity(More)
The ERICA Tool is a computerised, flexible software system that has a structure based upon the ERICA Integrated Approach to assessing the radiological risk to biota. The Tool guides the user through the assessment process, recording information and decisions and allowing the necessary calculations to be performed to estimate risks to selected animals and(More)
Available data have been analysed to test the hypothesis that both 3H and 14C transfer in mammals can be accounted for by an understanding of metabolism. Data obtained from various 14C and 3H experiments with rats and sheep have been analysed to assess the multi-component retention function of various organs and identify any relationship between half-times(More)
The application of allometric, or mass-dependent, relationships within radioecology has increased with the evolution of models to predict the exposure of organisms other than man. Allometry presents a method of addressing the lack of empirical data on radionuclide transfer and metabolism for the many radionuclide-species combinations which may need to be(More)
A major source of uncertainty in the estimation of radiation dose to wildlife is the prediction of internal radionuclide activity concentrations. Allometric (mass-dependent) relationships describing biological half-life (T1/2b) of radionuclides in organisms can be used to predict organism activity concentrations. The establishment of allometric expressions(More)
A key element of most systems for assessing the impact of radionuclides on the environment is a means to estimate the transfer of radionuclides to organisms. To facilitate this, an international wildlife transfer database has been developed to provide an online, searchable compilation of transfer parameters in the form of equilibrium-based whole-organism to(More)
The International Commission on Radiological Protection (ICRP) have suggested the identification of a series of terrestrial, marine and freshwater sites from which samples of each Reference animal and plant (RAP) could be systematically collected and analysed. We describe the first such study in which six of the eight terrestrial RAPs, and associated soil(More)
A required parameter for the ERICA Tool is the concentration ratio (CR), which is used to describe the transfer from environmental media to a range of organisms. For the original parameterisation of the ERICA Tool, 60% of these values were derived using a variety of extrapolation approaches, including the application of allometric models, the use of values(More)