Nicholas A. Vavalle

Learn More
Human body finite element models (FEMs) are a valuable tool in the study of injury biomechanics. However, the traditional model development process can be time-consuming. Scaling and morphing an existing FEM is an attractive alternative for generating morphologically distinct models for further study. The objective of this work is to use a radial basis(More)
This study presents four validation cases of a mid-sized male (M50) full human body finite element model—two lateral sled tests at 6.7 m/s, one sled test at 8.9 m/s, and a lateral drop test. Model results were compared to transient force curves, peak force, chest compression, and number of fractures from the studies. For one of the 6.7 m/s impacts (flat(More)
Validation is a critical step in finite element model (FEM) development. This study focuses on the validation of the Global Human Body Models Consortium full body average male occupant FEM in five localized loading regimes—a chest impact, a shoulder impact, a thoracoabdominal impact, an abdominal impact, and a pelvic impact. Force and deflection outputs(More)
OBJECTIVE The shape, size, bone density, and cortical thickness of the thoracic skeleton vary significantly with age and sex, which can affect the injury tolerance, especially in at-risk populations such as the elderly. Computational modeling has emerged as a powerful and versatile tool to assess injury risk. However, current computational models only(More)
Computational modeling offers versatility, scalability, and cost advantages to researchers in the trauma and injury biomechanics communities. The Global Human Body Models Consortium (GHBMC) is a group of government, industry, and academic researchers developing human body models (HBMs) that aim to become the standard tool to meet this growing research(More)
OBJECTIVE Objective evaluation methods of time history signals are used to quantify how well simulated human body responses match experimental data. As the use of simulations grows in the field of biomechanics, there is a need to establish standard approaches for comparisons. There are 2 aims of this study. The first is to apply 3 objective evaluation(More)
OBJECTIVE Finite element (FE) computer models are an emerging tool to examine the thoracic response of the human body in the simulated environment. In this study, a recently developed human body model, the Global Human Body Models Consortium (GHBMC) mid-sized male, was used to examine chestband contour deformations in a frontal and lateral impact. The(More)
Accurate mass distribution in computational human body models is essential for proper kinematic and kinetic simulations. The purpose of this study was to investigate the mass distribution of a 50th percentile male (M50) full body finite element model (FEM) in the seated position. The FEM was partitioned into 10 segments, using segment planes constructed(More)
OBJECTIVE Deep tissue injury (DTI) is caused by prolonged mechanical loading that disrupts blood flow and metabolic clearance. A patient simulator that mimics the biomechanical aspects of DTI initiation, stress and strain in deep muscle tissue, would be potentially useful as a training tool for pressure-relief techniques and testing platform for(More)
Motor vehicle crashes commonly result in blunt abdominal trauma. Approximately 19,000 such injuries occur each year in the United States. While finite element models of the human body are becoming an important tool for injury assessment, their reliability depends on the accuracy of the material models used. Recently, Samur et al. proposed a hyperelastic and(More)