Nicholas A. Floreani

Learn More
Neuro-cognitive deficits, neuronal injury, and neurodegeneration are well documented in alcoholics, yet the underlying mechanisms remain elusive. Oxidative damage of mitochondria and cellular proteins intertwines with the progression of neuroinflammation and neurological disorders initiated by alcohol abuse. Here, we present the evidence that metabolism of(More)
Oxidative damage of the endothelium disrupts the integrity of the blood-brain barrier (BBB). We have shown before that alcohol exposure increases the levels of reactive oxygen species (ROS; superoxide and hydroxyl radical) and nitric oxide (NO) in brain endothelial cells by activating NADPH oxidase and inducible nitric oxide synthase. We hypothesize that(More)
Dysfunction of protein turnover is a feature of many human diseases, and proteins are substrates in important biological processes. Currently, no method exists for the measurement of global protein turnover (i.e., proteome dynamics) that can be applied in humans. Here we describe the use of metabolic labeling with deuterium ((2)H) from (2)H(2)O and liquid(More)
Calorie restriction (CR) promotes longevity. A prevalent mechanistic hypothesis explaining this effect suggests that protein degradation, including mitochondrial autophagy, is increased with CR, removing damaged proteins and improving cellular fitness. At steady state, increased catabolism must be balanced by increasing mitochondrial biogenesis and protein(More)
Secretion of pro-inflammatory molecules by astrocytes after alcohol treatment was shown to be associated with neuroinflammation. We hypothesized that activation of cytosolic phospholipase A2 (cPLA2) and cyclooxygenase (COX-2) by ethanol in astrocytes enhanced the secretion of inflammatory agents via the interactive tyrosine phosphorylation of toll-like(More)
  • 1