Learn More
The transcription factor ATF2 has been shown to attenuate melanoma susceptibility to apoptosis and to promote its ability to form tumors in xenograft models. To directly assess ATF2's role in melanoma development, we crossed a mouse melanoma model (Nras(Q61K)::Ink4a⁻/⁻) with mice expressing a transcriptionally inactive form of ATF2 in melanocytes. In(More)
The signaling pathways that sense adverse stimuli and communicate with the nucleus to initiate appropriate changes in gene expression are central to the cellular stress response. Herein, we have characterized the role of the Sty1 (Spc1) stress-activated mitogen-activated protein kinase pathway, and the Pap1 and Atf1 transcription factors, in regulating the(More)
BACKGROUND The transition from G1 to S phase is the key regulatory step in the mammalian cell cycle. This transition is regulated positively by G1-specific cyclin-dependent kinases (cdks) and negatively by the product of the retinoblastoma tumour suppressor gene, pRb. Hypophosphorylated pRb binds to and inactivates the E2F transcription factor, which(More)
The AP-1 family transcription factor ATF2 is essential for development and tissue maintenance in mammals. In particular, ATF2 is highly expressed and activated in the brain and previous studies using mouse knockouts have confirmed its requirement in the cerebellum as well as in vestibular sense organs. Here we present the analysis of the requirement for(More)
E2F/DP complexes were originally identified as potent transcriptional activators required for cell proliferation. However, recent studies revised this notion by showing that inactivation of total E2F/DP activity by dominant-negative forms of E2F or DP does not prevent cellular proliferation, but rather abolishes tumor suppression pathways, such as cellular(More)
The transcriptional activation of CHOP (a CCAAT/enhancer-binding protein-related gene) by amino acid deprivation involves the activating transcription factor 2 (ATF2) and the activating transcription factor 4 (ATF4) binding the amino acid response element (AARE) within the promoter. Using a chromatin immunoprecipitation approach, we report that in vivo(More)
Ubiquitin-dependent proteolysis regulates gene expression in many eukaryotic systems. Pof1 is an essential fission yeast F-box protein that is homologous to budding yeast Met30. Temperature-sensitive pof1 mutants display acute growth arrest with small cell size. Extragenic suppressor analysis identified Zip1, a bZIP (basic leucine zipper) transcription(More)
Hub1/Ubl5 is a member of the family of ubiquitin-like proteins (UBLs). The tertiary structure of Hub1 is similar to that of ubiquitin; however, it differs from known modifiers in that there is no conserved glycine residue near the C terminus which, in ubiquitin and UBLs, is required for covalent modification of target proteins. Instead, there is a conserved(More)
The Atf1 transcription factor is critical for directing stress-induced gene expression in fission yeast [1]. Upon exposure to stress, Atf1 is hyperphosphorylated by the mitogen-activated protein kinase (MAPK) Sty1 [2, 3], which results in its stabilization [4]. The resulting increase in Atf1 is vital for a robust response to certain stresses [4]. Here we(More)
  • 1