Learn More
The signaling pathways that sense adverse stimuli and communicate with the nucleus to initiate appropriate changes in gene expression are central to the cellular stress response. Herein, we have characterized the role of the Sty1 (Spc1) stress-activated mitogen-activated protein kinase pathway, and the Pap1 and Atf1 transcription factors, in regulating the(More)
The transcription factor ATF2 has been shown to attenuate melanoma susceptibility to apoptosis and to promote its ability to form tumors in xenograft models. To directly assess ATF2's role in melanoma development, we crossed a mouse melanoma model (Nras(Q61K)::Ink4a⁻/⁻) with mice expressing a transcriptionally inactive form of ATF2 in melanocytes. In(More)
The promoter motif CGTCA binds multiple cellular factors that mediate a variety of inducible events, including positive responses to raised cellular levels of cAMP and to the Adenovirus E1a protein. To date, at least ten mammalian cDNA clones have been isolated that encode distinct proteins capable of binding to this motif. However, in most cases the(More)
A series of adenovirus type 5 (Ad5) deletion, insertion and substitution mutants, some of which are defective for transformation of rat cells, have been isolated. The mutants were selected as variants which lack the Xba I endonuclease cleavage site at 4 map units on the viral chromosome. The deletions range in size from 150-2300 bp and are located between(More)
The transcription factor E2F is regulated through its cyclical interaction with a spectrum of cellular proteins. One such protein is the product of the retinoblastoma gene (Rb); association of E2F with Rb inhibits its transactivation potential. However, in adenovirus-infected cells, E2F is complexed to the 19 kDa product of the adenovirus E4 gene. We have(More)
BACKGROUND The transition from G1 to S phase is the key regulatory step in the mammalian cell cycle. This transition is regulated positively by G1-specific cyclin-dependent kinases (cdks) and negatively by the product of the retinoblastoma tumour suppressor gene, pRb. Hypophosphorylated pRb binds to and inactivates the E2F transcription factor, which(More)
The AP-1 family transcription factor ATF2 is essential for development and tissue maintenance in mammals. In particular, ATF2 is highly expressed and activated in the brain and previous studies using mouse knockouts have confirmed its requirement in the cerebellum as well as in vestibular sense organs. Here we present the analysis of the requirement for(More)
The SV40 promoter is expressed well in the fission yeast S. pombe, and it initiates transcription at the same site as in mammalian cells. The majority of the enhancer sequences, however, do not contribute to this activity. DNAase I footprint analysis of the promoter revealed the presence of an AP-1-like factor in S. pombe cells that protects a region of the(More)
E2F/DP complexes were originally identified as potent transcriptional activators required for cell proliferation. However, recent studies revised this notion by showing that inactivation of total E2F/DP activity by dominant-negative forms of E2F or DP does not prevent cellular proliferation, but rather abolishes tumor suppression pathways, such as cellular(More)