Nibaldo C. Inestrosa

Learn More
The roles of the Wnt signalling pathway in several developmental processes, including synaptic differentiation, are well characterized. The expression of Wnt ligands and Wnt signalling components in the mature mammalian CNS suggests that this pathway might also play a part in synaptic maintenance and function. In fact, Wnts have a crucial role in synaptic(More)
During the formation of synapses, specific regions of pre- and postsynaptic cells associate to form a single functional transmission unit. In this process, synaptogenic factors are necessary to modulate pre- and postsynaptic differentiation. In mammals, different Wnt ligands operate through canonical and non-canonical Wnt pathways, and their precise(More)
Acetylcholinesterase (AChE), an important component of cholinergic synapses, colocalizes with amyloid-beta peptide (A beta) deposits of Alzheimer's brain. We report here that bovine brain AChE, as well as the human and mouse recombinant enzyme, accelerates amyloid formation from wild-type A beta and a mutant A beta peptide, which alone produces few(More)
Beta-amyloid (Abeta) 1-42, implicated in the pathogenesis of Alzheimer's disease, forms an oligomeric complex that binds copper at a CuZn superoxide dismutase-like binding site. Abeta.Cu complexes generate neurotoxic H(2)O(2) from O(2) through Cu(2+) reduction, but the reaction mechanism has been unclear. We now report that Abeta1-42, when binding up to 2(More)
Peroxisome proliferator-activated receptor gamma (PPARgamma) has been proposed as a therapeutic target for neurodegenerative diseases because of its anti-inflammatory action in glial cells. However, PPARgamma agonists preventbeta-amyloid (Abeta)-induced neurodegeneration in hippocampal neurons, and PPARgamma is activated by the nerve growth factor (NGF)(More)
Wnt ligands are secreted glycoproteins controlling gene expression and cytoskeleton reorganization involved in embryonic development of the nervous system. However, their role in later stages of brain development, particularly in the regulation of established synaptic connections, is not known. We found that Wnt-5a acutely and specifically upregulates(More)
The aim of this study was to evaluate whether the direct activation of the Wnt signaling pathway by its endogenous Wnt-3a ligand prevents the toxic effects induced by amyloid-beta-peptide (Abeta) in rat hippocampal neurons. We report herein that the Wnt-3a ligand was indeed able to overcome toxic effects induced by Abeta in hippocampal neurons, including a(More)
Wnt signaling is essential for neuronal development and the maintenance of the developing nervous system. Recent studies indicated that Wnt signaling modulates long term potentiation in adult hippocampal slices. We report here that different Wnt ligands are present in hippocampal neurons of rat embryo and adult rat, including Wnt-4, -5a, -7a, and -11.(More)
Growing evidence indicates that Wingless-type (Wnt) signaling plays an important role in the maturation of the central nervous system. We report here that Wingless-type family member 5A (Wnt-5a) is expressed early in development and stimulates dendrite spine morphogenesis, inducing de novo formation of spines and increasing the size of the preexisting ones(More)
The molecular pathogenesis of Alzheimer's disease (AD) involves the participation of the amyloid-beta-peptide (A beta), which plays a critical role in the neurodegeneration that triggers the disease. Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors, which are members of the nuclear receptor family. We report(More)