Nianpeng Lu

  • Citations Per Year
Learn More
Materials can be transformed from one crystalline phase to another by using an electric field to control ion transfer, in a process that can be harnessed in applications such as batteries, smart windows and fuel cells. Increasing the number of transferrable ion species and of accessible crystalline phases could in principle greatly enrich material(More)
Ag@SiO(2)@Ag sandwich nanostructures were prepared by a facile one-pot synthesis method. The Ag core, SiO(2) shell and Ag nanoparticle shell were all synthesized with polyvinylpyrrolidone, catalysed by ammonia, in the one-pot reaction. The polyvinylpyrrolidone, acting as a smart reducing agent, reduced the Ag(+) to Ag cores and Ag shells separately.(More)
The family of transition metal oxides (TMOs) is a large class of magnetic materials that has been intensively studied due to the rich physics involved as well as the promising potential applications in next generation electronic devices. In TMOs, the spin, charge, orbital and lattice are strongly coupled, and significant advances have been achieved to(More)
Field-effect transistors with ionic-liquid gating (ILG) have been widely employed and have led to numerous intriguing phenomena in the last decade, due to the associated excellent carrier-density tunability. However, the role of the electrochemical effect during ILG has become a heavily debated topic recently. Herein, using ILG, a field-induced(More)
Oxygen ion transport is the key issue in redox processes. Visualizing the process of oxygen ion migration with atomic resolution is highly desirable for designing novel devices such as oxidation catalysts, oxygen permeation membranes, and solid oxide fuel cells. Here we show the process of electrically induced oxygen migration and subsequent reconstructive(More)
  • 1