Niall J. Haslam

Learn More
Linear motifs are short, evolutionarily plastic components of regulatory proteins and provide low-affinity interaction interfaces. These compact modules play central roles in mediating every aspect of the regulatory functionality of the cell. They are particularly prominent in mediating cell signaling, controlling protein turnover and directing protein(More)
It is now clear that a detailed picture of cell regulation requires a comprehensive understanding of the abundant short protein motifs through which signaling is channeled. The current body of knowledge has slowly accumulated through piecemeal experimental investigation of individual motifs in signaling. Computational methods contributed little to this(More)
Linear motifs are short segments of multidomain proteins that provide regulatory functions independently of protein tertiary structure. Much of intracellular signalling passes through protein modifications at linear motifs. Many thousands of linear motif instances, most notably phosphorylation sites, have now been reported. Although clearly very abundant,(More)
Short linear motifs in proteins (typically 3-12 residues in length) play key roles in protein-protein interactions by frequently binding specifically to peptide binding domains within interacting proteins. Their tendency to be found in disordered segments of proteins has meant that they have often been overlooked. Here we present SLiMPred (short linear(More)
The conventional wisdom is that certain classes of bioactive peptides have specific structural features that endow their particular functions. Accordingly, predictions of bioactivity have focused on particular subgroups, such as antimicrobial peptides. We hypothesized that bioactive peptides may share more general features, and assessed this by contrasting(More)
Short, linear motifs (SLiMs) play a critical role in many biological processes, particularly in protein-protein interactions. The Short, Linear Motif Finder (SLiMFinder) web server is a de novo motif discovery tool that identifies statistically over-represented motifs in a set of protein sequences, accounting for the evolutionary relationships between them.(More)
Several methods for ultra high-throughput DNA sequencing are currently under investigation. Many of these methods yield very short blocks of sequence information (reads). Here we report on an analysis showing the level of genome sequencing possible as a function of read length. It is shown that re-sequencing and de novo sequencing of the majority of a(More)
Short, linear motifs (SLiMs) play a critical role in many biological processes. The SLiMSearch 2.0 (Short, Linear Motif Search) web server allows researchers to identify occurrences of a user-defined SLiM in a proteome, using conservation and protein disorder context statistics to rank occurrences. User-friendly output and visualizations of motif context(More)
MOTIVATION Peptides play important roles in signalling, regulation and immunity within an organism. Many have successfully been used as therapeutic products often mimicking naturally occurring peptides. Here we present PeptideLocator for the automated prediction of functional peptides in a protein sequence. RESULTS We have trained a machine learning(More)
We present the theory of thermal equivalence in the framework of the Peyrard-Bishop model and some of its anharmonic variants. The thermal equivalence gives rise to a melting index τ which maps closely the experimental DNA melting temperatures for short DNA sequences. We show that the efficient calculation of the melting index can be used to analyse the(More)