Nhan-Tam Nguyen

  • Citations Per Year
Learn More
A central task in multiagent resource allocation, which provides mechanisms to allocate (bundles of) resources to agents, is to maximize social welfare. We assume resources to be indivisible and nonshareable and agents to express their utilities over bundles of resources, where utilities can be represented in the bundle form, the $$k$$ k -additive form, and(More)
We define a family of rules for dividing m indivisible goods among agents, parameterized by a scoring vector and a social welfare aggregation function. We assume that agents’ preferences over sets of goods are additive, but that the input is ordinal: each agent simply ranks single goods. Similarly to (positional) scoring rules in voting, a scoring vector s(More)
We define a family of rules for dividing m indivisible goods among agents, parameterized by a scoring vector and a social welfare aggregation function. We assume that agents’ preferences over sets of goods are additive, but that the input is ordinal: each agent simply ranks single goods. Similarly to (positional) scoring rules in voting, a scoring vector s=(More)
We study resource allocation in a model due to Brams and King [2005] and further developed by Baumeister et al. [2014]. Resource allocation deals with the distribution of resources to agents. We assume resources to be indivisible, nonshareable, and of single-unit type. Agents have ordinal preferences over single resources. Using scoring vectors, every(More)
An important task in multiagent resource allocation, which provides mechanisms to allocate bundles of (indivisible and nonshareable) resources to agents, is to maximize social welfare. We study the computational complexity of exact social welfare optimization by the Nash product, which can be seen as a sensible compromise between the well-known notions of(More)
A central task in multiagent resource allocation, which provides mechanisms to allocate (bundles of) resources to agents, is to maximize social welfare. We assume resources to be indivisible and nonshareable and agents to express their utilities over bundles of resources, where utilities can be represented in the bundle form, the k-additive form, and as(More)
We define a family of rules for dividing m indivisible goods among agents, parameterized by a scoring vector and a social welfare aggregation function. We assume that agents’ preferences over sets of goods are additive, but that the input is ordinal: each agent reports her preferences simply by ranking single goods. Similarly to positional scoring rules in(More)