Nguyen Truong Co

Learn More
Using lattice models we explore the factors that determine the tendencies of polypeptide chains to aggregate by exhaustively sampling the sequence and conformational space. The morphologies of the fibril-like structures and the time scales (τ(fib)) for their formation depend on a balance between hydrophobic and Coulomb interactions. The extent of population(More)
We have developed the lattice model for describing polypeptide chains in the presence of crowders. The influence of crowding confinement on the fibrillation kinetics of polypeptide chains is studied using this model. We observed the non-trivial behavior of the fibril formation time τfib that it decreases with the concentration of crowders if crowder sizes(More)
Using lattice models we explore the factors that determine the tendencies of polypeptide chains to aggregate by exhaustively sampling the sequence and conformational space. The morphologies of the fibril-like structures and the time scales (τ f ib) for their formation depend on a subtle balance between hydrophobic and coulomb interactions. The extent of(More)
A new method for determining the size of critical nucleus of fibril formation of polypeptide chains is proposed. Based on the hypothesis that the fibril grows by addition of a nascent peptide to the preformed template, the nucleus size N(c) is defined as the number of forming template peptides above which the time to add a new monomer becomes independent of(More)
Fibril formation resulting from protein misfolding and aggregation is a hallmark of several neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. Despite the fact that the fibril formation process is very slow and thus poses a significant challenge for theoretical and experimental studies, a number of alternative pictures of molecular(More)
Using lattice models we explore the factors that determine the tendencies of polypeptide chains to aggregate by exhaustively sampling the sequence and conformational space. The morphologies of the fibril-like structures and the time scales (τ f ib) for their formation depend on a balance between hydrophobic and coulomb interactions. The extent of population(More)
  • 1