Learn More
An increased production of superoxide has been shown to mediate glutamate-induced neuron death. We monitored intracellular superoxide production of hippocampal neurons during and after exposure to the glutamate receptor agonist NMDA (300 microm). During a 30 min NMDA exposure, intracellular superoxide production increased significantly and remained elevated(More)
Increased serum levels of S100B are positively correlated with multiple forms of CNS damage, such as stroke, CNS trauma and neurodegenerative diseases, but also in psychiatric disorders. However, it is currently not known whether increased serum levels of S100B reflect a neuroregenerative or neurodegenerative response. Since glutamate receptor(More)
NGF has been shown to support neuron survival by activating the transcription factor nuclear factor -␬ B (NF ␬ B). We investigated the effect of NGF on the expression of Bcl-xL, an anti–apoptotic Bcl-2 family protein. Treatment of rat pheochromocytoma PC12 cells, human neuroblastoma SH-SY5Y cells, or primary rat hippocampal neurons with NGF (0.1–10 ng/ml)(More)
We have previously shown that nerve growth factor (NGF)-induced activation of nuclear factor-kappaB increased neuronal expression of Bcl-xL, an anti-apoptotic Bcl-2 family protein. In the present study we determined the role of the p75 neurotrophin receptor in constitutive and NGF-induced survival signalling. Treatment of rat pheochromocytoma (PC12) cells(More)
Neuron death in Alzheimer's disease is believed to be triggered by an increased production of amyloidogenic beta-amyloid peptides, involving both increased oxidative stress and activation of a conserved death program. Bcl-xL, an anti-apoptotic protein of the Bcl-2 family, is expressed at high levels in the adult nervous system. Exposure of neuronal cultures(More)
  • 1