Ngaire Underhill

Learn More
Severe weather avoidance programs (SWAP) due to convective weather are common in many of the busiest terminal areas in the US National Airspace System (NAS). In order to make efficient use of available airspace in rapidly evolving convective weather, it is necessary to predict the impacts of the weather on key resources (e.g., departure and arrival routes(More)
En route sector capacity is determined mainly by controller workload. The operational capacity model used by the Federal Aviation Administration (FAA) provides traffic alert thresholds based entirely on hand-off workload. Its estimates are accurate for most sectors. However, it tends to over-estimate capacity in both small and large sectors because it does(More)
We have extended an analytical workload model for estimating en route sector capacity to include the impact of convective weather. We use historical weather avoidance data to characterize weather blockage, which affects the sector workload in three ways: (1) Increase in the conflict resolution task rate via reduction in available airspace, (2) increase in(More)
The interconnectedness of departure and arrival operations serving multiple top tier airports in the New York area limits departure path possibilities when weather impacts the airspace. As a result, significant convective impacts requires traffic flows to be shifted between pre-established routes to safely depart traffic. This technique, called rerouting,(More)
Air traffic delays in the U.S. are problematic and often attributable to convective (thunderstorms) weather. Air traffic management is complex, dynamic, and influenced by many factors such as projected high volume of departures and uncertain forecast convective weather at airports and in the airspace. To support the complexities of making a re-route(More)
When operationally significant weather affects the National Airspace System (NAS) a Severe Weather Avoidance Program (SWAP) is initiated. Each SWAP event is a unique mix of demand, weather conditions, traffic flow management (TFM) initiatives and traffic movement. Following a SWAP, the day’s events are reviewed and the TFM initiatives used are evaluated to(More)
The presence of convective weather (thunderstorms) in terminal and nearby en route airspace of major metroplex areas can have significant impacts on departure operations. Traffic on departure routes impacted by convective weather may be constrained by miles-in-trail (MIT) restrictions, to allow controllers the time needed to maneuver individual flights(More)
A critical step in the design and development of new tools and systems for air traffic management is the estimation of potential benefits of the added technology. The current methodology of estimating the added benefit of a new tool is based on a combination of simulation and field observations, requiring either an extensive model of the system or a fielded(More)
When operationally significant weather affects a region of the National Airspace System (NAS) a Severe Weather Avoidance Program (SWAP) is initiated for that region. Each SWAP event is a unique mix of demand, weather conditions, traffic flow management (TFM) initiatives and traffic movement. On the day following a SWAP, the SWAP events are reviewed by FAA(More)
  • 1