Learn More
Identifying metaphorical language-use (e.g., sweet child) is one of the challenges facing natural language processing. This paper describes three novel algorithms for automatic metaphor identification. The algorithms are variations of the same core algorithm. We evaluate the algorithms on two corpora of Reuters and the New York Times articles. The paper(More)
Full natural language understanding requires identifying and analyzing the meanings of metaphors, which are ubiquitous in both text and speech. Over the last thirty years, linguistic metaphors have been shown to be based on more general conceptual metaphors, partial semantic mappings between dis-parate conceptual domains. Though some achievements have been(More)
A huge number of videos are posted every day on social media platforms such as Facebook and YouTube. This makes the Internet an unlimited source of information. In the coming decades, coping with such information and mining useful knowledge from it will be an increasingly difficult task. In this paper, we propose a novel methodology for multimodal sentiment(More)
Past works on personality detection has shown that psycho-linguistic features, frequency based analysis at lexical level, emotive words and other lexical clues such as number of first person or second person words carry major role to identify personality associated with the text. In this work, we propose a new architecture for the same task using common(More)
Concept-level text analysis is superior to word-level analysis as it preserves the semantics associated with multi-word expressions. It offers a better understanding of text and helps to significantly increase the accuracy of many text mining tasks. Concept extraction from text is a key step in concept-level text analysis. In this paper, we propose a(More)
—The ability to understand natural language text is far from being emulated in machines. One of the main hurdles to overcome is that computers lack both the common and common-sense knowledge humans normally acquire during the formative years of their lives. In order to really understand natural language, a machine should be able to grasp such kind of(More)
As the gap between human and machine shrinks, it becomes increasingly important to develop computer systems that incorporate or enhance existing Situation Awareness. However, these tend to focus on raw quantitative parameters, such as position and speed of objects. When these situations are governed by human actors, such parameters leave significant margins(More)
The capability of interpreting the conceptual and affective information associated with natural language through different modalities is a key issue for the enhancement of human-agent interaction. The proposed methodology, termed sentic blending, enables the continuous interpretation of semantics and sentics (i.e., the conceptual and affective information(More)