Learn More
The brain produces two brain-derived neurotrophic factor (BDNF) transcripts, with either short or long 3' untranslated regions (3' UTRs). The physiological significance of the two forms of mRNAs encoding the same protein is unknown. Here, we show that the short and long 3' UTR BDNF mRNAs are involved in different cellular functions. The short 3' UTR mRNAs(More)
Pro- and mature brain-derived neurotrophic factor (BDNF) activate two distinct receptors: p75 neurotrophin receptor (p75(NTR)) and TrkB. Mature BDNF facilitates hippocampal synaptic potentiation through TrkB. Here we report that proBDNF, by activating p75(NTR), facilitates hippocampal long-term depression (LTD). Electron microscopy showed that p75(NTR)(More)
Neurotrophins have diverse functions in the CNS. Initially synthesized as precursors (proneurotrophins), they are cleaved to produce mature proteins, which promote neuronal survival and enhance synaptic plasticity by activating Trk receptor tyrosine kinases. Recent studies indicate that proneurotrophins serve as signalling molecules by interacting with the(More)
Protein kinases critically regulate synaptic plasticity in the mammalian hippocampus. Cyclic-AMP dependent protein kinase (PKA) is a serine-threonine kinase that has been strongly implicated in the expression of specific forms of long-term potentiation (LTP), long-term depression (LTD), and hippocampal long-term memory. We review the roles of PKA in(More)
Transcription of Bdnf is controlled by multiple promoters, which drive expression of multiple transcripts encoding for the same protein. Promoter IV contributes significantly to activity-dependent brain-derived neurotrophic factor (BDNF) transcription. We have generated promoter IV mutant mice (BDNF-KIV) by inserting a GFP-STOP cassette within the Bdnf exon(More)
The late phase of long-term potentiation (L-LTP) is correlated with some types of long-term memory, but the mechanisms by which L-LTP is modulated by prior synaptic activity are undefined. Activation of protein phosphatases by low-frequency stimulation (LFS) given before induction of L-LTP may significantly modify L-LTP. Using cellular electrophysiological(More)
Parvalbumin-positive interneurons, which include basket and chandelier cells, represent a unique class of interneurons. By innervating the soma and the axonal initial segment of pyramidal cells, these interneurons can elicit powerful control on the output of pyramidal cells and consequently are important for a number of physiological processes in the(More)
Integrins are a large family of cell adhesion receptors involved in a variety of cellular functions. To study their roles at central synapses, we used two cre recombinase lines to delete the Itgb1 beta1 integrin gene in forebrain excitatory neurons at different developmental stages. Removal of the beta1 integrins at an embryonic stage resulted in severe(More)
cAMP-dependent protein kinase (PKA) is believed to play a critical role in the expression of long-lasting forms of hippocampal long-term potentiation (LTP). Can distinct patterns of synaptic activity induce forms of LTP that require different isoforms of PKA? To address this question, we used transgenic mice that have genetically reduced hippocampal PKA(More)
De novo protein synthesis and transcription are necessary for the expression of long-lasting synaptic potentiation [long-term potentiation (LTP)] in hippocampal area CA1 and for the consolidation of long-term memory. The stability of LTP and its longevity require macromolecular synthesis at later stages, but a specific role for early protein synthesis has(More)