Neville J. Butcher

Learn More
The human arylamine N-acetyltransferases first attracted attention because of their role in drug metabolism. However, much of the current literature has focused on their role in the activation and detoxification of environmental carcinogens and how genetic polymorphisms in the genes create predispositions to increased or decreased cancer risk. There are two(More)
Many drugs and chemicals found in the environment are either detoxified by N-acetyltransferase 1 (NAT1, EC and eliminated from the body or bioactivated to metabolites that have the potential to cause toxicity and/or cancer. NAT1 activity in the body is regulated by genetic polymorphisms as well as environmental factors such as substrate-dependent(More)
Arylamine N-acetyltransferase I (NAT1) is a phase II enzyme that acetylates a wide range of arylamine and hydrazine substrates. The NAT1 gene is located on chromosome 8 and shares homology to NAT genes found in most mammalian species. Gene expression occurs from at least two promoters and a number of tissue-specific transcripts have been identified. The(More)
The arylamine N-acetyltransferases (NATs) are involved in the metabolism of a variety of different compounds that we are exposed to on a daily basis. Many drugs and chemicals found in the environment, such as those in cigarette smoke, car exhaust fumes and in foodstuffs, can be either detoxified by NATs and eliminated from the body or bioactivated to(More)
Human N-acetyltransferase type 1 (NAT1) catalyses the N- or O-acetylation of various arylamine and heterocyclic amine substrates and is able to bioactivate several known carcinogens. Despite wide inter-individual variability in activity, historically, NAT1 was considered to be monomorphic in nature. However, recent reports of allelic variation at the NAT1(More)
Arylamine N-acetyltransferase-1 (NAT1) is an enzyme that catalyzes the biotransformation of arylamine and hydrazine substrates. It also has a role in the catabolism of the folate metabolite p-aminobenzoyl glutamate. Recent bioinformatics studies have correlated NAT1 expression with various cancer subtypes. However, a direct role for NAT1 in cell biology has(More)
Human arylamine N-acetyltransferases (NAT) bioactivate arylamine and heterocyclic amine carcinogens present in red meat and tobacco products. As a result, factors that regulate expression of NATs have the potential to modulate cancer risk in individuals exposed to these classes of carcinogens. Because epidemiologic studies have implicated well-done meat(More)
While plasma proteins can influence the physicochemical properties of nanoparticles, the adsorption of protein to the surface of nanomaterials can also alter the structure and function of the protein. Here, we show that plasma proteins form a hard corona around synthetic layered silicate nanoparticles (LSN) and that one of the principle proteins is serum(More)
The Phase II drug metabolizing enzyme arylamine N-acetyltransferase 1 (NAT1) has been implicated in the growth and survival of cancer cells, although the mechanisms that underlies these effects are unknown. Here, a focused metabolomics approach was used to identify changes in folate catabolism as well as the S-adenosylmethionine (SAM) cycle following NAT1(More)
Arylamine N-acetyltransferase 1 is a phase II metabolizing enzyme that has been associated with certain breast cancer subtypes. While it has been linked to breast cancer risk because of its role in the metabolic activation and detoxification of carcinogens, recent studies have suggested it may be important in cell growth and survival. To address the(More)