Learn More
1. Initiation of subsynaptic sarcolemmal specialization and expression of different molecular forms of AChE were studied in fast extensor digitorum longus (EDL) and slow soleus (SOL) muscle of the rat under different experimental conditions in order to understand better the interplay of neural influences with intrinsic regulatory mechanisms of muscle cells.(More)
The hypothesis of satellite cell diversity in slow and fast mammalian muscles was tested by examining acetylcholinesterase (AChE) regulation in muscles regenerating 1) under conditions of muscle disuse (tenotomy, leg immobilization) in which the pattern of neural stimulation is changed, and 2) after cross-transplantation when the regenerating muscle(More)
In rat muscles, AChE activity drops rapidly after denervation, and the patterns of AChE molecular forms in slow and fast muscles differ considerably. Both observations imply that muscle AChE is regulated by the motor nerve. In order to obtain a better insight into the underlying mechanism, AChE regulation in rat muscles was examined on the level of its(More)
Acetylcholinesterase (AChE) molecular forms in denervated rat muscles, as revealed by velocity sedimentation in sucrose gradients, were examined from three aspects: possible differences between fast and slow muscles, response of junctional vs extrajunctional AChE, and early vs late effects of denervation. In the junctional region, the response of the(More)
Velocity sedimentation analysis of acetylcholinesterase (AChE) molecular forms in the fast extensor digitorum longus muscle and in the slow soleus muscle of the rat was carried out on days 4, 8, and 14 after induction of muscle paralysis by botulinum toxin type A (BoTx). The results were compared with those observed after muscle denervation. In addition,(More)
Expression of acetylcholine receptor and of the asymmetric molecular forms of acetylcholinesterase (AChE) in the extrajunctional regions of rat muscles is suppressed during early postnatal development. In mature muscles, the extrajunctional synthesis of acetylcholine receptor, but not of the asymmetric molecular forms of AChE, becomes reactivated after(More)
Acetylcholinesterase (AChE) mRNA levels are severalfold higher in fast rat muscles compared with slow. We hypothesized that AChE mRNA levels and AChE activity in the neuromuscular junction depend on a specific nerve-induced pattern of motor unit activation. Chronic low-frequency stimulation, mimicking the activation pattern in slow muscles, was applied to(More)
The asymmetric A12 acetylcholinesterase (AChE) molecular form, consisting of three tetrameric catalytic oligomers and three non-catalytic subunits of collagen Q (ColQ), is the functional AChE form in the neuromuscular junction. Its extremely high concentration and sharp localization in the junction is mostly due to the binding of this AChE form to perlecan(More)
Noninnervated regenerating muscles are able to form focal postsynaptic-like sarcolemmal specializations either in places of the former motor endplates ("junctional" specializations) or elsewhere along the muscle fibers (extrajunctional specializations). The triple labeling histochemical method was introduced to analyse the congruity of focalization in such(More)
New findings regarding acetylcholinesterase (AChE) in the neuromuscular junction (NMJ), obtained in the last decade, are briefly reviewed. AChE is highly concentrated in the NMJs of vertebrates. Its location remains stable after denervation in mature rat muscles but not in early postnatal muscles. Agrin in the synaptic basal lamina is able to induce(More)