Ness B. Shroff

Learn More
We present an “opportunistic” transmission scheduling policy that exploits time-varying channel conditions and maximizes the system performance stochastically under a certain resource allocation constraint. We establish the optimality of the scheduling scheme, and also that every user experiences a performance improvement over any non-opportunistic(More)
This tutorial paper overviews recent developments in optimization-based approaches for resource allocation problems in wireless systems. We begin by overviewing important results in the area of opportunistic (channel-aware) scheduling for cellular (single-hop) networks, where easily implementable myopic policies are shown to optimize system performance. We(More)
We consider the problem of throughput-optimal scheduling in wireless networks subject to interference constraints. We model the interference using a family of K -hop interference models. We define a K-hop interference model as one for which no two links within K hops can successfully transmit at the same time (Note that IEEE 802.11 DCF corresponds to a(More)
In this paper, we characterize the performance of an important class of scheduling schemes, called greedy maximal scheduling (GMS), for multihop wireless networks. While a lower bound on the throughput performance of GMS has been well known, empirical observations suggest that it is quite loose and that the performance of GMS is often close to optimal. In(More)
We present a method, called opportunistic scheduling, for exploiting the timevarying nature of the radio environment to increase the overall performance of the system under certain QoS/fairness requirements of users. We first introduce a general framework for opportunistic scheduling, and then identify three general categories of scheduling problems under(More)
Distributed power-control algorithms for systems with hard signal-to-interference ratio (SIR) constraints may diverge when infeasibility arises. In this paper, we present a power-control framework called utility-based power control (UBPC) by reformulating the problem using a softened SIR requirement (utility) and adding a penalty on power consumption(More)
In this paper, we study cross-layer design for rate control in multihop wireless networks. In our previous work, we have developed an optimal cross-layered rate control scheme that jointly computes both the rate allocation and the stabilizing schedule that controls the resources at the underlying layers. However, the scheduling component in this optimal(More)
In this paper, we investigate the problem of distributively allocating transmission data rates to users in the Internet. We allow users to have concave as well as sigmoidal utility functions as appropriate for different applications. In the literature, for simplicity, most works have dealt only with the concave utility function. However, we show that(More)
We consider an unreliable wireless sensor gridnetwork with n nodes placed in a square of unit area. We are interested in the coverage of the region and the connectivity of the network. We first show that the necessary and sufficient conditions for the random grid network to cover the unit square region as well as ensure that the active nodes are connected(More)
Since the original work of Grossglauser and Tse, which showed that mobility can increase the capacity of an ad hoc network, there has been a lot of interest in characterizing the delay-capacity relationship in ad hoc networks. Various mobility models have been studied in the literature, and the delay-capacity relationships under those models have been(More)