Nesrine Ben Romdhane

Learn More
Spin-transfer torque magnetic memory (STT-MRAM) is currently under intense academic and industrial development, since it features non-volatility, high write and read speed and high endurance. In this work, we show that when used in a non-conventional regime, it can additionally act as a stochastic memristive device, appropriate to implement a "synaptic"(More)
—Emerging non-volatile memories (NVM) based on re-sistive switching mechanism (RS) such as STT-MRAM, OxRRAM and CBRAM etc., are under intense R&D investigation by both academics and industries. They provide high write/read speed, low power and good endurance (e.g.,) beyond mainstream NVMs, which allow them to be embedded directly with logic units for(More)
—Advanced computing systems suffer from high static power due to the rapidly rising leakage currents in deep sub-mi-cron MOS technologies. Fast access non-volatile memories (NVM) are under intense investigation to be integrated in Flip-Flops or computing memories to allow system power-off in standby state and save power. Spin Transfer Torque MRAM (STT-MRAM)(More)
Current induced domain walls (DW) motion in magnetic nanowires or nano-stripes presents a novel approach to store and convey data. Combining with magnetic tunnel junction (MTJ) nanopillars, Racetrack memory (RM) becomes a new class of non-volatile memory thanks to its large storage capacity and fast data access. However, we need a relatively high current(More)
  • 1