Nenad Lazarević

We don’t have enough information about this author to calculate their statistics. If you think this is an error let us know.
Learn More
The lattice dynamics of FeSb(2) is investigated by first-principles density functional theory calculations and Raman spectroscopy. All Raman- and infrared-active phonon modes are properly assigned. The calculated and measured phonon energies are in good agreement. We have observed strong mixing of the A(g) symmetry modes, with the intensity exchange in the(More)
Polarized Raman scattering spectra of superconducting K(x)Fe(2-y)Se2 and non-superconducting K0.8Fe1.8Co0.2Se2 single crystals were measured in the temperature range from 10 K up to 300 K. Two Raman active modes from the I4/mmm phase and seven from the I4/m phase are observed in the frequency range from 150 to 325 cm(-1) in both compounds, suggesting that(More)
We report the low-temperature Raman scattering study of racemic ibuprofen. Detailed analysis of the racemic ibuprofen crystal symmetry, related to the vibrational properties of the system, has been presented. The first principle calculations of a single ibuprofen molecule dynamical properties are compered with experimental data. Nineteen, out of 26 modes(More)
The phonon properties of CoSb(2) have been investigated by Raman scattering spectroscopy and lattice dynamics calculations. Sixteen out of eighteen Raman active modes predicted by factor-group analysis are experimentally observed and assigned. The calculated and measured phonon energies at the Γ point are in very good agreement. The temperature dependence(More)
Polarized Raman scattering spectra of the K x Co2-y Se2 single crystals reveal the presence of two phonon modes, assigned as of the A 1g and B 1g symmetry. The absence of additional modes excludes the possibility of vacancy ordering, unlike in K x Fe2-y Se2. The ferromagnetic (FM) phase transition at [Formula: see text] K leaves a clear fingerprint on the(More)
  • 1