Nenad Gucunski

Learn More
Detection of cracks on bridge decks is a vital task for maintaining the structural health and reliability of concrete bridges. Robotic imaging can be used to obtain bridge surface image sets for automated on-site analysis. We present a novel automated crack detection algorithm, the STRUM (spatially tuned robust multifeature) classifier, and demonstrate(More)
—The condition of bridges is critical for the safety of the traveling public. Bridges deteriorate with time as a result of material aging, excessive loading, environmental effects, and inadequate maintenance. The current practice of nondestructive evaluation (NDE) of bridge decks cannot meet the increasing demands for highly efficient, cost-effective, and(More)
Bridges are one of the critical civil infrastructure for safety of traveling public. The conditions of bridges deteriorate with time as a result of material aging, excessive loading, and inadequate maintenance, etc. In this paper, the development of an autonomous robotic system is presented for highly-efficient bridge deck inspection and evaluation. An(More)
Bridge deck inspection is conducted to identify bridge condition deterioration and, thus, to facilitate implementation of appropriate maintenance or rehabilitation procedures. In this paper, we report the development of a robotic system for bridge deck data collection and analysis. The robotic system accurately localizes itself and autonomously maneuvers on(More)
Cracks on a bridge deck should be ideally detected at an early stage in order to prevent further damage. To ensure safety, it is necessary to inspect the quality of concrete decks at regular intervals. Conventional methods usually include manual inspection of concrete surfaces to determine defects. Though very e↵ective, these methods are time-inecient. This(More)
This paper presents a dynamic model of pure percussive drilling for autonomous robotic rehabilitation for concrete bridge decks. We first describe the autonomous mobile manipulator-based concrete drilling system for bridge deck rehabilitation. A dry friction-based pure percussive drilling model is then presented to describe the drilling process(More)
Ground penetrating radar (GPR) is used to evaluate deterioration of reinforced concrete bridge decks based on measuring signal attenuation from embedded rebar. The existing methods for obtaining deterioration maps from GPR data often require manual interaction and offsite processing. In this paper, a novel algorithm is presented for automated rebar(More)
Reflection amplitude at top rebar layer has been used as a main criterion for evaluating attenuation of ground-penetrating radar (GPR) data from concrete bridge decks. However, a recent study has pointed out the limitation of this practice. Motivated by that same research, the current paper presents a robust method for performing GPR attenuation analysis.(More)
A very common problem in concrete bridge decks is corrosion induced delamination. Impact echo (IE) is one of the nondestructive techniques used in the bridge deck condition assessment and monitoring to detect presence and position of a delamination. To detect a delamination, the IE technique relies on finding the peak frequency in the spectrum of the signal(More)