Learn More
Several protein kinases, including Mos, maturation-promoting factor (MPF), mitogen-activated protein (MAP) kinase, and MAP kinase kinase (MAPKK), are activated when Xenopus oocytes enter meiosis. De novo synthesis of the Mos protein is required for progesterone-induced meiotic maturation. Recently, bacterially synthesized maltose-binding protein (MBP)-Mos(More)
Two-dimensional gel electrophoresis followed by silver-staining has been employed to study 27 red cell lysates for genetic variation. Forty-six polypeptides selected without respect to variability were considered suitable for scoring. Only 23 of the total of 1,242 polypeptides could not be scored unambiguously. Of the remaining 1,219 polypeptides, 38(More)
The mos proto-oncogenes from different vertebrate species transform mouse NIH 3T3 cells with markedly different efficiencies. v-mos, mouse (c-mosmu), and chicken (c-mosch) mos transform NIH 3T3 cells 10- to 100-fold more efficiently than do human (c-moshu) and Xenopus (c-mosxc) mos. The mos genes with the highest transforming activity efficiently induce(More)
The relationship between the mos protooncogene protein and cAMP-dependent protein kinase (PKA) during the maturation of Xenopus oocytes was investigated. Microinjection of the PKA catalytic subunit (PKAc) into Xenopus oocytes inhibited oocyte maturation induced by the mos product but did not markedly affect the autophosphorylation activity of injected mos(More)
In an effort to maximize the amount of genetic information that can be extracted from a blood sample, we investigated the use of two-dimensional polyacrylamide-gel electrophoresis (PAGE) to resolve the protein constituents of the erythrocyte membrane. Lyophilized membranes were dissolved in various concentrations of urea, NP-40 detergent, and(More)
The lipophilic iminosugar N-[5-(adamantan-1-ylmethoxy)pentyl]-1-deoxynojirimycin (2, AMP-DNM) potently controls hyperglycemia in obese rodent models of insulin resistance. The reduction of visceral glycosphingolipids by 2 is thought to underlie its beneficial action. It cannot, however, be excluded that concomitant inhibition of intestinal glycosidases and(More)
The product of the mos proto-oncogene is a serine/threonine kinase that is expressed at high levels in germ cells. Mos is a regulator of meiotic maturation, and is required for the initiation and progression of oocyte meiotic maturation that leads to the production of unfertilized eggs. Mos is also a component of cytostatic factor, an activity that is(More)
The mos protooncogene has opposing effects on cell cycle progression. It is required for reinitiation of meiotic maturation and for meiotic progression through metaphase II, yet it is an active component of cytostatic factor. mos is a potent oncogene in fibroblasts, but high levels of expression are lethal. The lethality of mos gene expression in mammalian(More)
The endogenous mos proto-oncogene product (Mos) is required for meiotic maturation. In Xenopus oocytes, the ras oncogene product (Ras) can induce meiotic maturation and high levels of M-phase--promoting factor (MPF) independent of endogenous Mos, indicating that a parallel pathway to metaphase exists. In addition, Ras, like Mos and cytostatic factor, can(More)