Nelson Escobales

Learn More
The Syrian cardiomyopathic hamster (SCH) is an established animal model for genetic cardiomyopathy. The disease in the hamster develops through similar stages to those observed in humans with this condition. The pathophysiological basis for this condition in the hamster resides in an inherited mutation in the gene encoding for delta-sarcoglycan, a component(More)
Mitochondria-generated reactive oxygen species (ROS) play a crucial role in the pathogenesis of aging and age-associated diseases. In this study, we evaluated the effects of XJB-5-131 (XJB), a mitochondria-targeted ROS and electron scavenger, on cardiac resistance to ischemia-reperfusion (IR)-induced oxidative stress in aged rats. Male adult (5-month old,(More)
BACKGROUND Congestive heart failure is a clinical condition associated with alterations in the normal balance of neurohumoral agents and factors acting on the vascular wall. The etiology of this condition, however, remains largely undefined. To help elucidate the pathophysiology of this disease, vascular function and angiotensin-converting enzyme activity(More)
Recent studies indicate the presence of vascular alterations in 2-month-old Syrian cardiomyopathic hamsters (SCH). These alterations include enhanced angiotensin-converting enzyme (ACE) activity in the aorta, increased contractile response to angiotensin II and impaired vasorelaxation to acetylcholine in norepinephrine-precontracted aortic rings. The(More)
The role of transmembrane pH gradients on the ouabain, bumetanide and phloretin-resistant Na+ transport was studied in human red cells. Proton equilibration through the Jacobs-Stewart cycle was inhibited by the use of DIDS (125 μm) and methazolamide (400 μm). Red cells with different internal pH (pH i =6.4, 7.0 and 7.8) were prepared and Na+ influx was(More)
Heart failure (HF) is a multifactorial and progressive disease that has been associated with multiple systemic and vascular alterations. Previous reports from our laboratory showed that in 2-month-old Bio-To2 Syrian cardiomyopathic hamsters (SCH) that have not yet developed the clinical manifestations of HF, the vascular contractility induced by 0.1 microM(More)
Endothelial dysfunction is recognized as a critical event in the etiology of cardiovascular diseases, but its possible role during aging in arterial hypertension remains poorly defined. We evaluated the response of aortic rings precontracted with 0.1 microM norepinephrine (NE) to acetylcholine (ACh) in the San Juan hypertensive rats (SJH-Rs) (F19, F20) and(More)
In addition to their central role in ATP synthesis, mitochondria play a critical role in cell death. Oxidative stress accompanied by calcium overload, ATP depletion, and elevated phosphate levels induces mitochondrial permeability transition (MPT) with formation of nonspecific MPT pores (MPTP) in the inner mitochondrial membrane. Pore opening results in(More)
We studied the Na+/K+ pump, Na+/K+ ATPase activity, and oxygen consumption (QO2) in hepatocytes isolated from the periportal (PH) and pericentral (CH) regions of the liver lobule, to provide an insight into the functional properties of these cells. Na+/K+ pump activity was determined using86Rb+ (a functional analog of K+) and ouabain, a specific inhibitor(More)
Studies on the role of mitochondrial fission/fusion (MFF) proteins in the heart have been initiated recently due to their biological significance in cell metabolism. We hypothesized that the expression of MFF proteins is affected by post-infarction remodeling and in vitro cardiomyocyte hypertrophy, and serves as a target for the Na+/H+ exchanger 1 (NHE-1)(More)