Learn More
Newly synthesized proteins that leave the endoplasmic reticulum (ER) are funnelled through the Golgi complex before being sorted for transport to their different final destinations. Traditional approaches have elucidated the biochemical requirements for such transport and have established a role for transport intermediates. New techniques for tagging(More)
Quantitative imaging and photobleaching were used to measure ER/Golgi recycling of GFP-tagged Golgi proteins in interphase cells and to monitor the dissolution and reformation of the Golgi during mitosis. In interphase, recycling occurred every 1.5 hr, and blocking ER egress trapped cycling Golgi enzymes in the ER with loss of Golgi structure. In mitosis,(More)
The mechanism by which Golgi membrane proteins are retained within the Golgi complex in the midst of a continuous flow of protein and lipid is not yet understood. The diffusional mobilities of mammalian Golgi membrane proteins fused with green fluorescent protein from Aequorea victoria were measured in living HeLa cells with the fluorescence photobleaching(More)
The distribution and dynamics of both the ER and Golgi complex in animal cells are known to be dependent on microtubules; in many cell types the ER extends toward the plus ends of microtubules at the cell periphery and the Golgi clusters at the minus ends of microtubules near the centrosome. In this study we provide evidence that the microtubule motor,(More)
We have previously shown that estradiol causes a twofold rise in dendritic spine density in cultured rat hippocampal neurons, as it does in vivo. More recently, estrogen receptors have been localized to aspiny inhibitory hippocampal interneurons, indicating that their effect on spiny pyramidal neurons may be indirect. We therefore examined the possibility(More)
Dendritic spines are of major importance in information processing and memory formation in central neurons. Estradiol has been shown to induce an increase of dendritic spine density on hippocampal neurons in vivo and in vitro. The neurotrophin brain-derived neurotrophic factor (BDNF) recently has been implicated in neuronal maturation, plasticity, and(More)
The Golgi complex is a dynamic organelle engaged in both secretory and retrograde membrane traffic. Here, we use green fluorescent protein-Golgi protein chimeras to study Golgi morphology in vivo. In untreated cells, membrane tubules were a ubiquitous, prominent feature of the Golgi complex, serving both to interconnect adjacent Golgi elements and to carry(More)
Although the mutation of alpha-synuclein, a protein associated with presynaptic vesicles, is implicated in the etiology and pathogenesis of Parkinson's disease, the biological function of the normal protein is unknown. Mice that lack alpha-synuclein have been generated by homologous recombination in embryonic stem cells. Electron microscopic examination of(More)
Organelles of the central membrane system of higher eukaryotes have been shown to utilize microtubules both for maintenance of their characteristic spatial distributions and for efficient transport of their protein and lipid to diverse sites within the cell. Recent work addressing the mechanisms that underlie this organization provides new insights(More)
Clathrin independent endocytosis (CIE) is a form of endocytosis present in all cells that mediates the entry of nutrients, macromolecules and membrane proteins into cells. When compared to clathrin-dependent endocytosis (CDE), however, much less is known about the machinery involved in forming CIE endosomes. One way to distinguish CIE from CDE has been to(More)