Nelly Rahkonen

Learn More
Low oxygen tension (hypoxia) contributes critically to pluripotency of human embryonic stem cells (hESCs) by preventing spontaneous differentiation and supporting self-renewal. However, it is not well understood how hESCs respond to reduced oxygen availability and what are the molecular mechanisms maintaining pluripotency in these conditions. In this study(More)
Genomic integrity of human pluripotent stem cell (hPSC) lines requires routine monitoring. We report here that novel karyotyping assay, utilizing bead-bound bacterial artificial chromosome probes, provides a fast and easy tool for detection of chromosomal abnormalities in hPSC lines. The analysis can be performed from low amounts of DNA isolated from whole(More)
The RNA-binding protein L1TD1 is one of the most specific and abundant proteins in pluripotent stem cells and is essential for the maintenance of pluripotency in human cells. Here, we identify the protein interaction network of L1TD1 in human embryonic stem cells (hESCs) and provide insights into the interactome network constructed in human pluripotent(More)
  • 1