Learn More
Sensory feedback from muscles and peripheral sensors acts to initiate, tune or reshape motor activity according to the state of the body. Yet, sensory neurons often show low levels of activity even in the absence of sensory input. Here we examine the functional role of spontaneous low-frequency activity of such a sensory neuron. The anterior gastric(More)
Proprioceptive sensory feedback has important functions for motor pattern generation in which phasic negative and positive feedback is used to coordinate neural and musculoskeletal dynamics. Whether and how feedback sign regulates the motor patterns in behaviorally relevant closed-loop conditions has not been fully elucidated. We characterized the feedback(More)
We studied the relationship between neuropeptide receptor transcript expression and current responses in the stomatogastric ganglion (STG) of the crab, Cancer borealis. We identified a transcript with high sequence similarity to crustacean cardioactive peptide (CCAP) receptors in insects and mammalian neuropeptide S receptors. This transcript was expressed(More)
The perception of proprioceptive signals that report the internal state of the body is one of the essential tasks of the nervous system and helps to continuously adapt body movements to changing circumstances. Despite the impact of proprioceptive feedback on motor activity it has rarely been studied in conditions in which motor output and sensory activity(More)
We studied how similar postsynaptic responses are maintained in the face of interindividual variability in the number of presynaptic neurons. In the stomatogastric ganglion of the lobster, Homarus americanus, the pyloric (PY) neurons exist in variable numbers across animals. We show that each individual fiber of the stomach muscles innervated by PY neurons(More)
The crustacean stomatogastric nervous system is a long-standing test bed for studies of circuit dynamics and neuromodulation. We give a brief update on the most recent work on this system, with an emphasis on the broader implications for understanding neural circuits. In particular, we focus on new findings underlining that different levels of dynamics(More)
  • 1